

 Navigation

 	
 index

 	eDeploy 1.0 documentation

eDeploy User Guide

Linux systems provisionning and updating made easy

Table of Contents

	eDeploy User Guide
	Linux systems provisionning and updating made easy
	What eDeploy is made for ?
	Building Operating Systems
	Organizing Roles

	Role Versioning

	Deploying Roles
	Finding a role that match

	Installing the operating system

	The last action if installation is successful

	Manage the Upgrade Process

	Building Operating Systems (in detail)
	Installing eDeploy

	Building the role
	Choosing the role

	Choosing the Linux Distribution

	Defining the build version

	Choosing the default package repository
	Using Redhat Enterprise Linux

	Additional Repositories
	Redhat Network

	Building the role

	Output
	Full directory

	Compressed file

	How to create a new role ?
	Anatomy of a Role
	Creating the install file

	Creating the exclude file

	Makefile & Dependencies

	Basic API to add repositories or packages

	Deploy operating systems on an infrastructure
	Preparing the Infrastructure
	PXE based installation

	Network installation via USB booting

	Local installation via USB booting

	Defining eDeploy deployment tool’s configuration

	Preparing the eDeploy Server
	Dependencies
	Setting up the CGI bin

	Configuring eDeploy server
	The configuration file

	Downloading the Operating System
	Installing Operating Systems by using Rsync

	Installing Operating Systems by using HTTP

	Creating Hardware profiles and assign them to roles
	Spec file

	Corner cases when writing rules
	First rules shall be the most discriminative

	Not having the same criteria when searching for network interfaces

	Creating the configure script
	Best Practices

	Generating /post_rsync configuration

	Function helpers for configure scripts

	Using the Configuration Management Database (CMDB)
	Why using a CMDB ?

	Creating a CMDB file

	Defining ranges or lists

	The deflated version of the CMDB file

	Using $$variable

	Using CMDB values inside the configure script

	Setup the state file

	Boot the target server

	Debugging
	Enable SSH server on target server

	Centralize Logging (UPLOAD_LOG=1)
	Log file content

	Log file location

	Try match - Debugging match failures

	Manage the Upgrade Process (In Detail)
	What the upgrade process should do ?

	How to create an upgrade ?
	The upgrade file

	Run ./upgrade-from script

	Customize add_only / exclude / pre / post files
	add_only

	exclude

	pre

	post

	Run the upgrade on the client
	edeploy list - list available update

	edeploy test_upgrade VERSION - simulate the upgrade

	edeploy upgrade VERSION - perform the actual upgrade

	edeploy verify - verify the integrity of the current state

	Upgrade post-configuration policies
	Puppet

	Exclude during the upgrade generation

	Manage Downgrades
	File name syntax

	Downgrade script content

	Developingon eDeploy
	Git Organisation
	Ansible/

	Build/

	Config/

	Debian/

	Grapher/

	Metadata/

	Server/

	Src/

	Tests/

	Testing eDeploy
	Building the role & deployment tool

	Start the virtual machine

	Install the virtual machine

	Halt the virtual machine & power it up again

	Starting the tests

	APPENDIX
	APPENDIX A
	Hard drive

	System

	Firmware

	Network

	Cpu
	Per CPU

	Aggregation for all CPUs

	Memory

	Infiniband
	Per card

	Per port

What eDeploy is made for ?

While scalable configuration tools management systems (able to provision
1000+) emerged, yet the state of the art to actually deploy that many
OSes remains really basic.

Edeploy bridges this gap, allowing a user to deploy and maintain
thousands of OSes.

Unique key features of eDeploy are :

	Hardware’s profile based detection to match roles

	Role based provisioning

	Scalable

To deploy and maintain servers in a cloud environment, 3 differents
steps are required :

	Build Operating Systems and version them

	Deploy these operating systems on an infrastructure

	Manage the upgrade process

The following chapters will describe how eDeploy is managing these tasks
and the associated concepts.

Building Operating Systems

Setting up a cloud infrastructure requires specializing servers
invarious roles (computing, storage, management, …).

The first concept in eDeploy is to offer an automatized way to build and
version the underlying operating system required for every role.

Organizing Roles

Each role in an infrastructure is sharing a common basis, usually the
same Linux distribution, and then got specialized by adding specific
packages.

eDeploy is using the same approach to generate the Operating Systems for
each role.

For a given Linux Distribution, like Redhat Entreprise Linux, Debian or
Ubuntu, a minimalist environment is being built : this is called the
‘base’. Base doesn’t aims at being used on a real system, it’s just an
empty nutshell that will be used afterward as a basis to create the
roles users requires.

[image: _images/image00.jpg]
This illustration shows how the Baserole can be derived in final roles
like a database server or a web proxy but also in meta-roles than aims
at providing a more specialize base for a group of roles.

The blue boxes represents the meta-role while the light orange ones are
roles will be deployed on the infrastructure.

In this example, an ‘Openstack Common’ meta-role has been created to put
in a common place all the commonalities between all the final openstack
roles (compute and storage).

Role Versioning

The building process of a role generates a tree or a compressed file
composed with :

	the role name

	the Linux Distribution name

	a custom identifier

	a custom version

This unique naming insure at deployment time the exact content of the
selected operating system. Each version of a role defines the package
set and theirs version.

Several versions of a single role can exists, like for adding new
packages or fixing bugs. The upgrade path will be explained in chapter
‘Manage the upgrade process’

Deploying Roles

Deploying an infrastructure like a Cloud means deploying various
operating systems on many servers and adjusting the configuration on a
server basis.

As seen in the previous chapter, operating systems dedicated for each
role required in the infrastructure are pre-built and ready to be
deployed.

It’s now time to determine which server shall receive which operating
system and how many times a role should be deployed.

Finding a role that match

To deploy a server,eDeploy detects its hardware configuration and
compares it to a list of hardware profiles. If one match and if this
profile have to be deployed one time or more, the targeted server will
be installed.

[image: _images/image01.jpg]

Installing the operating system

If a spec file match the hardware description of the server to be
deployed, it received the instructions to prepare itself to receive the
operating system. This instructions features :

	disk’s partitioning

	file system formatting

	final networking configuration

	any other low-level configuration (serial line, IPMI, ..)

eDeploy shall only consider to perform the low-level configuration
needed to boot the system like having properly formated file systems and
system reachable from the network (IPv4/IPv6/ssh).

All services configuration like http, openstack services, SQL database
setup and other shall be done by any other external tool like puppet or
chef. eDeploy only aims at providing a bootable operating system with
all the required packages installed and the low-level setup done.

Once the configuration of the server is done, eDeploy will extract on
its local disk an operating system, defined by the matching role, downloaded from an image server by using RSYNC or HTTP connexion.

[image: _images/image02.jpg]
After the Operating System extraction, a post configuration is performed
to insure a proper network, hostname, etc.. configuration. The
bootloader is then installed.

The installation process is finished, system is ready to be used.

The last action if installation is successful

Once the installation is done, the user will be able to choose many
different scenario :

	reboot the server

	power the server down

	start system with kexec without any reboot

	get a console for debug purposes

Manage the Upgrade Process

Once a server got installed with eDeploy and rebooted, it will be needed
at some time to update it. To achieve this update, it is not required to
get back to the deployment phase as presented before.

An eDeploy client tool got added during the post configuration phase of
the initial deployment. This tool can be used to upgrade the system from
a version to another of the same role.

Upgrade paths are defined on the image server and defines files to
updates and actions to performs before and after the installation.

The upgrade process will stop the impacted services, perform the file
installation and restart the services.

[image: _images/image03.jpg]
[image: _images/image04.jpg]
Upgrade paths for a given role are defined by the eDeploy administrator.
It will detail operations to performs between two versions. Some upgrade
paths can be defined toward a smaller revision if no data coherency or
conversion are involved.

Building Operating Systems (in detail)

Installing eDeploy

First, git clone the eDeploy repository with this url :
https://github.com/enovance/edeploy.git

Then check your host have the following prerequisites :

	python-openstack.nose-plugin

	python-mock

	python-netaddr

	debootstrap

	qemu-kvm

	qemu-utils

	libfrontier-rpc-perl

	yum

Some optional packages could be installed also :

	pigz

Regarding the Linux distribution you use, the package names could be a
little different from that list.

Building the role

Choosing the role

Firstable, you need to select a role you want to build. The available
roles are listed in the build/directory with the
.installextension. In this example, we’ll build
openstack-computerole.

Choosing the Linux Distribution

Then, choose a Linux Distribution in the following list and get a
DISTparameter that will be appended on the command line. In our
example, we’ll choose Debian Wheezy.

The following list provides the DISTvalue for all supported Linux
distribution :

	Redhat 6.5 : DIST=redhat

	Centos 6.4 : DIST=centos

	Debian Wheezy : DIST=wheezy|squeeze|jessie

	Ubuntu Precise (12.04) :
DIST=precise|lucid|quantal|raring|saucy|trusty

Defining the build version

At the end, we choose a version. A version is a unique identifier that
will represent this couple (role+Linux Distribution) at the time you did
the build. The version string will be put inside the VERSION
variable.

In this example, we choose H-1.0.0 standing for ‘Havana , build version
1.0.0’. We add VERSION=’H-1.0.0’on the command line.

Choosing the default package repository

Linux distributions are made of packages stored into packages
repositories. To build a role, the ‘base’ role needs to know where the
packages shall be taken from.

Each Linux distribution owns its particular packages repositories,
eDeploy’s administrator may override the default setting by using the
REPOSITORYvariable.

For example, to use a local proxy to gain access tothe Debian packages,
you could setup :
‘REPOSITORY=http://10.68.0.2:3142/ftp.fr.debian.org/debian’

Using Redhat Enterprise Linux

When using a Redhat Linux Enterprise distribution, you’ll need some
specific configuration.

RHEL provides its distribution in an ISO format like :
‘rhel-server-6.5-x86_64-dvd.iso’

The REPOSITORYvariable shall point an HTTP server that share the
content of the iso.

If you prefer using directly the iso file locally, you have to define
the ISO_PATHvariable instead of using REPOSITORYlike
‘ISO_PATH=/mnt/share/rhel-server-6.5-x86_64-dvd.iso’.

Additional Repositories

To build more complex roles like openstack, it is required to add
additional repositories. eDeploy uses the EPEL and RDO repositories for
both Centos and Redhat.

Redhat Network

To gain all required dependencies and latest updates, Redhat Enterprise
Linux users have to provide credentialto login on the Redhat Network
portal. RHN_USERNAME and RHN_PASSWORD shall be used to provides
respectively RHN username and password like in :

RHN_USERNAME=”myemail@mycompany.com”
RHN_PASSWORD=’mypassword”

Note:The Redhat Network configuration used during the build process is
removed once done. This is mandatory to avoid leacking your credentials.

Building the role

To launch the build, enter the build/directory and use the make
command with all the required variables as shown in the previous
sub-chapters.

In our example, we have :

make DIST=wheezy DVER=D7 VERSION='H-1.0.0' openstack-compute

As mentioned above, to create a role there are 3 required variables :

	DIST : The name of the base distribution

	DVER : The distribution version like Debian 7 => D7 or CentOS 6.5 =>
C65

	VERSION : The version of the profile

To add anotherexample if we had to build the openstack-compute role for
Redhat we use :

make DIST=redhat VERSION='H-1.0.0'
ISO_PATH=/mnt/share//rhel-server-6.5-x86_64-dvd.iso
RHN_USERNAME="myuser@mycompany.com" RHN_PASSWORD="mypassword"
openstack-compute

As shown in the first chapter, the openstack-compute role build two
other roles. First, it builds the base role if not already built and
then the openstack-common one. Theses builds’ dependenciesare
required before building the openstack-compute role.

Output

When a role got built successfully, the result is available in two
different way while representing the same content.

By default, unless the TOP variable is overridden at make time, the
/var/lib/debootstrap/install/<RELEASE>-<VERSION> directory features
the following :

	a full directory

	a compressed file

Full directory

A directory is created for each role containing the full tree of the
operating system except the virtual filesystems like /proc, /dev, /sys.
For our example, the path of our openstack-compute role for wheezy is :
/var/lib/debootstrap/install/D7-H-1.0.0/openstack-compute/

This directory could be used by the rsync initial deployment but is
mandatory when managing updates.

Compressed file

The compressed file are name like <ROLE>-<RELEASE>-<VERSION>.edeploy
like openstack-compute-D7-H.1.0.0.edeploy. Its MD5 checksum is stored
into the same filename with a ‘.md5’ extension like
openstack-compute-D7-H.1.0.0.edeploy.md5.

This file is a gzipped version of the full directory and could be used
for

	HTTP deployments

	Archiving purpose

How to create a new role ?

Anatomy of a Role

A role is made of two files, the install file and the exclude file, both
located in the $BUILDDIR directory.

More often the role to create is based on another role like baseor a
more specialized role like openstack-common. The following description
of the install file is focused on mysqlrole as baserole is already
provided by eDeploy.

Note:eDeploy provides a sample role called ‘sample’that could be use
as a basis to create any new role. It provides all the best pratice to
get a good starting point and a clean role.

Creating the install file

The install script is in charge of creating the appropriate OS tree. The
user have the total freedom of customizing the new OS tree based on its
needs, by doing all sort of differents tasks:

	Add/Remove new repository

	Add/Remove new packages

	Change configuration file

	And much more ….

eDeploy provides an API for packages and repositories management. It
will be explained on a further chapter.

Find below an example of a possible mysql.installfile

src="$1"
dir="$2"
ROLE=mysql
ORIG=$(cd $(dirname $0); pwd)
PACKAGES="mysql-server"
 . ${ORIG}/functions
 update_repositories $dir
 install_ib_if_needed $ORIG $dir
 case "$(package_tool)" in
 "apt")
 # trick to allow to test and demo updates: remove the update
 source for this role
 rm -f ${dir}/etc/apt/sources.list.d/updates.list
 do_chroot ${dir} debconf-set-selections <<<
 'mysql-server-5.1 mysql-server/root_password password your_password'
 do_chroot ${dir} debconf-set-selections <<<
 'mysql-server-5.1 mysql-server/root_password_again password
 your_password'
 install_packages $dir "$PACKAGES"
 ;;
 "yum")
 install_packages $dir "$PACKAGES"
 do_chroot ${dir} chkconfig --level 2345 mysqld on
 ;;
 *)
 fatal_error "$package_tool isn't supported for $ROLE role"
 ;;
 esac
 clear_packages_cache $dir

An install script called the following way :

myrole.install orig dest version

Where myrole.installrepresents your .install script, origrepresents
the role you are basing the new role on, destrepresents the path the
generated OS tree will be located. The version parameters is only
necessary for the base role.

To build the MySQL role, the command looks like :

mysql.install base mysql 1.0.0

Note: an install script will never be called directly but via a make
target (more details are provided in the following ‘Makefile &
Dependencies’ sub-chapter.)

Creating the exclude file

The final purpose of the exclude file is to be passed to an rsync
command via the ‘–exclude-from’ parameter.

--exclude-from=FILE
 This option is related to the --exclude option, but
it specifies a FILE that contains exclude patterns (one per line).
Blank lines in the file and lines starting with ';' or '#' are
ignored.

Functionally, it rsync all the files from the new OS tree, mindness the
specified files in the exclude file.

Makefile & Dependencies

To make it easier to build roles, eDeploy provides a central Makefile
($BUILDDIR/Makefile) to build the roles. Each role as a corresponding
set of entry in the Makefile. In this example we focus on the mysql
role.

To create the role target in the Makefile, here the mysql target as
follow :

mysql: $(INST)/mysql.done

Then create the matching target. This is where you actually run the
install script (ie. mysql.install) and specify on which role and version
it is based. (ie. $(INST)/base and $(VERS)). Once the role got built, a
mysql.done file is created that means the job has been done.

$(INST)/mysql.done: mysql.install $(INST)/base.done
./mysql.install $(INST)/base $(INST)/mysql $(VERS)
touch $(INST)/mysql.done

To ease the role creation, a sample target named ‘sample’ is included in
the makefile. A simple copy/paste is a good starting point.

Find below various examples of build target :

openstack-compute role based on openstack-common

openstack-compute: $(INST)/openstack-compute.done
$(INST)/openstack-compute.done: openstack-compute.install
$(INST)/openstack-common.done
 ./openstack-compute.install
$(INST)/openstack-common $(INST)/openstack-compute $(VERS)
 touch $(INST)/openstack-compute.done

devstack role based on cloud

devstack: $(INST)/devstack.done
$(INST)/devstack.done: devstack.install $(INST)/cloud.done
 ./devstack.install $(INST)/cloud $(INST)/devstack $(DIST)$(VERS)
 touch $(INST)/devstack.done

cloud role based on base

cloud: $(INST)/cloud.done
$(INST)/cloud.done: cloud.install $(INST)/base.done
 ./cloud.install $(INST)/base $(INST)/cloud $(VERS)
 touch $(INST)/cloud.done

Basic API to add repositories or packages

In the following table one can find the different functions eDeploy
provides to help deal with packages and repositories.

Please note :

	$diris the chroot environment

	$DISTis the Linux distribution name

	pkg{n} is the package name

	API function name
	Actions
	Syntax

	install_packages
	install listed packages
	install_packages $dir pkg1 pkg2

	remove_packages
	remove listed packages
	remove_packages $dir pkg1 pkg2

	update_repositories
	update package repositories
	update_repositories $dir

	update_system
	update the existing packages
	update_system $dir

	upgrade_system
	upgrading packages to new versions or release
	upgrade_system $dir

	clear_package_cache
	clear package
	cache clear_package_cache $dir

	is_package_installed
	check if package installed
	is_package_installed $dir pkg

	add_epel_repository
	enable EPEL repository
	add_epel_repository $dir

	add_rhn_repostitory
	register to Redhat Network
	add_rhn_repository $DIST $dir

	unregister_rhn
	unregister from Redhat Network
	unregister_rhn $DIST $dir

	rebuild_db_with_local
	rebuild rpm database by using rpm from the system
	rebuild_db_with_local $dir

	rebuild_db rebuild
	rpm database by using rpm from the chroot
	rebuild_db $dir

Deploy operating systems on an infrastructure

As seen in the first chapter, eDeploy can be used to create roles and
build them in a constant way. It’s now time to deploy those roles on
the physical infrastructure.

eDeploy’s concept is to describe what hardware properties shall be
associated to a given role. In a cloud infrastructure, servers are
usually built to match a particular functional role :

	storage nodes have many disks

	compute node have stronger CPU and more memory

	etc..

This chapter is about preparing the server to be installed, describe
them and assign to a role and finally perform the deployment.

Preparing the Infrastructure

This subchapter describe the requirements to get your environment being
able to perform a deployment.

It is highly recommended using PXE booting to ease the process.
Therefore an USB booting scenario exists but could be difficult to
scale.

PXE based installation

Installing servers by using PXE ease the process of getting the initial
Linux Kernel and its RAMFS. To get a PXE working in an infrastructure
you need :

	a DHCP server to get an automatic network addressing used during the
deployment only

	it shall also answer PXE requests

	a TFTP server for regular PXE booting or a HTTP/FTP server for an
iPXE|gPXE booting

	This server shall provides a bootstrap, usually pxelinux from the
Syslinux project

	Target servers configured to do PXE booting as first boot device

	This is a bios setup to enable the option ROM and a specific boot
order configuration

If we consider a traditional PXE booting, a server shall host the tftp
server and the bootstrap.

We suggest you to use dnsmasq which is a neat DNS/PXE/TFTP/DHCP server.

On Debian based systems: apt-get install dnsmasq syslinux-common

On RHEL based systems: yum install dnsmasq syslinux-tftpboot. You may
need to enable a optionnal channel like rhel-x86_64-server-optional-6.5.z to
get access to this package.

Your /etc/dnsmasq.conf should look like this example:

interface=eth0
no-negcache
no-resolv
read-ethers

cache-size = 4096
log-async = 25

domain=example.com,10.193.108.0/24

dhcp-range=10.193.108.224,10.193.108.239

Default gateway
dhcp-option=3,"10.193.108.1"
dhcp-option=66,"10.193.108.1"

dhcp-lease-max=1000
#dhcp-authoritative
dhcp-boot=pxelinux.0
dhcp-boot=net:normalarch,pxelinux.0
dhcp-boot=net:ia64,$elilo
enable-tftp
tftp-root=/tftpboot

dhcp-host=00:50:56:89:9C:8D,compute-01,10.193.108.227
dhcp-host=00:50:56:89:3B:E9,compute-02,10.193.108.228

Make sure you create the file $TFTPBOOT_ROOT/pxelinux.cfg/default

Also make sure you copy pxelinux.0 to $TFTPBOOT_ROOT/

An example of what the pxelinux.cfg/default file might look like

prompt 0
timeout 0
default eDeploy
serial 0

LABEL eDeploy
 KERNEL vmlinuz
 INITRD initrd.pxe
 APPEND SERV=192.168.122.45 HSERV=192.168.122.45 ONFAILURE=console ONSUCESS=kexec VERBOSE=1 UPLOAD_LOG=1 HTTP_PATH=/

The pxelinux configuration could be more precise to match a particular
host or using some network filtering to define profiles. Please refer to
Syslinux documentation if you need such setup.

To generate the required kernel and initrd, the pxe role of eDeploy
have to be built.

Please refer to ‘Defining the boot configuration’ subchapter to get
details on how to configure the eDeploy deployment tool.

Network installation via USB booting

If no PXE boot is available on the infrastructure, it is possible to use
an USB based solution to start the eDeploy deployment tool on the server
to be installed.

Note:This solution is not scalable and could be difficult to setup. The
number of USB keys and the induced latency to power on all the servers
in the proper configuration could be very problematic.

To get an USB bootable setup, you need :

	a target server where USB booting is enabled

	USB bootable device shall be the default boot option (in boot order
bios menu)

	the bootable image shall be built with static parameters

	All the configuration about server’s ip and some other (please refer
to ‘Defining the boot configuration’ for complete description) shall
be defined at build time while PXE booting can do it dynamically

	If a DHCP server exists you can get an automatic network address used
during the deployment only

	If no DHCP server exists, use the IP= command to put a static address
to one of your interface to contact the edeploy server like :
IP=eth0:192.168.1.254/24,other:none

	It’s also possible to ask to bind an interface to a specific vlan adding the
‘@’ character followed by the VLAN id:
IP=eth0:192.168.1.254/24@101,other:none

The USB bootstrap is built by using the ‘img’ role available in eDeploy.
All required parameters shall be provided during the built process. A
bootable image is generated and shall be installed on a USB key by using
the ‘dd’ command.

make img DIST='wheezy' SERV=192.168.1.1
...
Raw disk image is available here: initrd.pxe-D7-F.1.0.0.img
dd if=initrd.pxe-D7-F.1.0.0.img of=/dev/<your_usb_key> bs=1M

Local installation via USB booting

If no PXE boot is available on the infrastructure, it is possible to use
an USB based solution to start the eDeploy deployment tool on the server
to be installed.

Note:This solution is not scalable and could be difficult to setup.
If multiple hosts shall be deploied, a single USB key shall be used
generating a sequential deploiement (1 server at a time).

To get an USB bootable setup, you need :

	a target server where USB booting is enabled

	USB bootable device shall be the default boot option (in boot order
bios menu)

	the bootable image shall be built with static parameters

	a role to deploy already built

	an hardware description (specs/configure/logs) that match the hardware

The USB bootstrap is built by using the ‘img’ role available in eDeploy.
All required parameters shall be provided during the built process. A
bootable image is generated and shall be installed on a USB key by using
the ‘dd’ command.

This solution works like the following:
- building an img image with EMBEDDED_OS & EMBEDDED_ROLE variable
- boot this image on the host to deploy
- the hw matching is done localy
- the target OS is deployed from the USB key to the host machine

EMBEDDED_OS variable shall point to an existing .edeploy file.
This OS will be included inside the USB bootable image.
The name of the resulting image will contain the role name.

EMBEDDED_ROLE variable shall point to the hardware description without
any .cmdb/.spec/.configure extension.
The three configuration file (.cmd/.spec/.configure) are copied on the USB device.

At boot time, the upload.py is executed from the USB device instead of
the edeploy server and uses the cmdb, configure & spec file from the USB
stick. So this deploiement method doesn’t require any network configuration/service.

Those files will remain on a writable partition of the USB stick making
it consistent over time. That way, if you provide a CMDB with several
host to deploy, the same key can be used several time to deploy the
remaining hosts.

make img DIST='wheezy' EMBEDDED_OS=/var/lib/debootstrap/install/D7-H.1.1.0/deploy-D7-H.1.1.0.edeploy EMBEDDED_ROLE=/home/erwan/Devel/edeploy/config/kvm-usb
...
Raw disk image is available here: initrd.pxe-D7-H.1.1.0-with-deploy-D7-H.1.1.0.img
dd if=initrd.pxe-D7-H.1.1.0-with-deploy-D7-H.1.1.0.img of=/dev/<your_usb_key> bs=1M

Defining eDeploy deployment tool’s configuration

Defining the configuration of the deployment tool could be done at build
time for the USB mode or at boot time for the PXE based deployment.

In both scenario, options remains the same and the following list is
exhaustive :

	Variable Name
	Role
	Default value

	SERV
	IP address of the eDeploy server URL
	10.0.0.1

	HTTP_PATH
	Path to access the upload.py (HTTP_PATH/upload.py)
	/cgi-bin/

	HTTP_PORT
	HTTP Port to contact the eDeploy server
	80

	HSERV
	IP address of the HTTP server for Compressed File transfer
	None

	HSERV_PORT
	Port to contact the HTTP server for Compressed File transfer
	80

	HPATH
	Path on the HTTP server for Compressed File transfer
	install

	RSERV
	IP address of the RSYNC server for Full Directory file transfer
	None

	RSERV_PORT
	Port to contact the RSYNC server for Full Directory file transfer
	873

	RPATH
	Path on the RSYNC server for Full Directory file transfer
	install

	ONSUCCESS
	Action to take upon successful installation (kexec|reboot|halt|console)
	reboot

	ONFAILURE
	Action to take upon failed installation (console|halt)
	halt

	KEXEC_KERNEL
	The version of the expect kernel to be booted with kexec
	None

	UPLOAD_LOG
	Boolean. Upload log file on eDeploy server
	1 (enabled)

	VERBOSE
	Boolean. Enable the verbose mode
	0 (disabled)

	DEBUG
	Boolean. Enable debug mode (start a ssh_server for further access)
	0 (disabled)

	IP
	A list of network device configuration (see below for details)
	all:dhcp

	LINK_UP_TIMEOUT
	Timeout to consider a network link detection completed
	10 (seconds)

Note : The kexec option of ONSUCCESS means that after a successful
deployment of the operating system, eDeploy extract both kernel and
initrd of the freshly installed system and boot it immediately without
any power cycle thanks to the kexec technology. This option improve
greatly system’s availability by avoiding a potentially long rebooting
process thanks to option BIOS ROMs (PXE, SATA & RAID controllers).
When the deployed operating system features several kernel versions,
edeploy will by default select the first kernel available. If user
wants to enforce a particular version, the KEXEC_KERNEL can be used.
KEXEC_KERNEL arguments expect a kernel version taken from the filename.
This kernel version shall be unique in the /boot/ directory.
KEXEC_KERNEL=3.2.0-4 will boot vmlinuz & initrd that hold 3.2.0-4 in its name.

Note: The IP= option is composed of a coma separated list of interfaces and
their configuration like <netdev>:<config>,<othernetdev>:<config>.
The netdev represent the network device from the linux point of view like eth0.
Two special values exists :
- other : to match all interfaces not listed in this list
- all : to match all interfaces

The config options are:
- none (no IP configurtion at all)
- dhcp
- <CIDR address>

The address is under the CIDR notation like 192.168.0.1/24.
Some typical IP invocations could be:
- IP=eth0:dhcp,other=none
- IP=eth1:192.168.1.1/24,other:none
- IP=all:none

By default, all intefaces make DHCP requests with ‘IP=all:dhcp’

Note: All this options can be overloaded by using cloud-init. If the host is running under an hypervisor, the boot process will try to find a cloud-init server.
To consider the user-data as valid for eDeploy, it shall have the #EDEPLOYMAGIC keyword followed by a set of bash variables and their values.

A typical configuration looks like:

#EDEPLOYMAGIC
KEXEC_KERNEL=3.10.0-123.el7

Note: Kernel arguments surrounded by pipes will be propagated on the installed hosts bootloader’s configuration. A typical use case is to override the default linux console to use the serial lines like in the following example :

APPEND initrd=initrd.pxe [...] | console=tty0 console=ttyS0,115200n8 |

Preparing the eDeploy Server

The eDeploy server is onlya simple CGI python script that :

	receive the hardware profiles from servers to install

	try to match them with hardware specifications (.spec files)

	check if the associated role of an hardware specification have to be
provisioned

	if so,

	decrement the number of system to be provisioned on this role (state
file)

	compute a set of key/value settings (CMDB)

	send the configuration script to the server to installed

	if not

	inform the server to be installed that no roles are available for it

Dependencies

This simple CGI script have a two dependencies :

	python >= 2.6

	python-ipaddr

Setting up the CGI bin

The hardware/profile matching is done by calling upload.pypython script
on the eDeploy server. For this script to be executed the server needs
toallow the execution of CGI scripts.

The location of the upload.pyscript is defined by the
HTTP_PATHvariable, the url of the server is defined by SERVvariable
and the port are specified by HTTP_PORTvariable.

To sum it up, the upload.py script need to be available at :
http://SERV:HTTP_PORT/HTTP_PATH/upload.py

To validate its proper installation, connecting any web client to it,
like wget, shall return the following error message : ‘No file passed to
the CGI’

Note: SERV, HTTP_PORT, HTTP_PATHvariables are specified as
parameters at boot time.

Configuring eDeploy server

The configuration file
The main eDeploy configuration file is located at /etc/edeploy.conf. It
is, at the moment, not possible to have it anywhere else on the system.
This might evolve in future releases.

An example of /etc/edeploy.conf

[SERVER]
HEALTHDIR = /var/lib/edeploy/health/
CONFIGDIR = /var/lib/edeploy/config/
LOGDIR = /var/lib/edeploy/config/logs
HWDIR = /var/lib/edeploy/hw/
LOCKFILE = /var/run/httpd/edeploy.lock
USEPXEMNGR = True
PXEMNGRURL = http://192.168.122.1:8000/
METADATAURL = http://192.168.122.1/

You can have multiple sections representing different deployments. The
<section> name is found according to the SECTION=<section>
kernel boot argument instead of the default SERVER section when no
argument is specified.

The following table provide the list of settings and their usage for
each section. To insure a proper installation, the directory owner is
mentioned.

	Setting name
	Usage
	Directory Owner

	HEALTHDIR
	Path where the Automatic Health Check role will put its results
	http service

	CONFIGDIR
	Path where all the available roles are located (state file included)
	http service

	LOGDIR
	Path where the log file are stored
	http service

	HWDIR
	Path where the received hardware profiles are stored
	http service

	LOCKFILE
	Lock used to insure coherency during processing
	http service

	USEPXEMNGR
	Define if PXE Manager shall be used (True or False)
	N/A

	PXEMNGRURL
	URL that serves the PXE Manager service
	N/A

	METADATAURL
	URL that serves the cloud-init configuration (leave empty if none)
	N/A

Downloading the Operating System

During the first installation, the eDeploy client query the eDeploy
server for the OS tree files (Full directory or Compressed files). The
administrator needs to provide a way to make those data available on the
network. eDeploy supports two differents protocols. eDeploy
administrator shall define which one to be used:

	Rsync: provides Full directory files

	Location is specified by RSERVand RSERV_PORT variables

	HTTP: provides compressed .edeploy files.

	Location is specified by HSERVand HSERV_PORT variables

HSERV, HSERV_PORT, RSERV, RSERV_PORTvariables are specified as
parameters at boot time.

If RSERVvariable is not specified it is equal to SERVvalue. The init
script search for HSERVand then for RSERV.

Note: Further upgrades are exclusively done by using Rsync protocole.

Installing Operating Systems by using Rsync
The Rsync server is optional, but is an alternative to HTTP transfer.
The rsync server shall be enabled on the server pointed by RSERV value.

On Debian based systems: apt-get install rsync

On RHEL based systems: yum install rsync

The rsync server shall export two directories :

	the installation directory ($INST)

	the metadata directory

The installation directory is used to download operating systems trees
while the metadata is used to determine which upgrades are available for
a given role on a given version.

Here a sample configuration file of the rsync server configuration file :

uid = root
gid = root
[install]
 path = /var/lib/debootstrap/install
 comment = eDeploy install trees
[metadata]
 path = /var/lib/debootstrap/metadata
 comment = eDeploy metadata

Installing Operating Systems by using HTTP
The HTTP server is optional, but is an alternative to Rsync transfer. It
shall be enabled on the server pointed by HSERV value.

On Debian based systems: apt-get install apache2

On RHEL based systems: yum install httpd

It is mandatory that/var/lib/debootstrap/installdirectory is
available over an HTTP access so eDeploy client can retrieve the images.
Operating system images shall be available via
http://HSERV:HPORT/install url.

Creating Hardware profiles and assign them to roles

An hardware profile is composed of three files :

	specs file: description of the hardware to match

	configure script: in charge of configuring the server before the OS installation

	cmdb file: define a set of host’s based key/value settings used during {post}configuration

Spec file

Specs file are describing hardware profiles. They describe - in its own
DSL - the requirements a hardware needs to meet to be tied to a specific
role. Specs file works in an all or nothing fashion. To be tied to a
specific profile, the server to be provisioned hardware profile must
match all the ruleswritten in this file. The default ‘vm-debian.spec’
file looks like this :

[
 ('disk', '$disk', 'size', 'and(gt(4), lt(12))'),
 ('network', '$eth', 'ipv4', 'network(192.168.122.0/24)'),
 ('network', '$eth', 'serial', '$mac=not(regexp(^28:d2:))'),
]

To match the ‘vm-debian’ profile, a hardware system mustmatch the
following criterias :

	have a hard drive bigger than 4GB and smaller than 12GB

	have one network interface on the 192.168.122.0/24 IPV4 network

	have a MAC address not starting by 28:d2:

The more discriminant criterias are, the more accurate the matching is.
For example, the most discriminant criteria is the serial number of a
server as it is supposed to be unique and the least discriminant is the
processor family as its very common. An inefficient specs file could
lead to servers being provisioned with a profile they should not be
provisioned with.

To make this description file more flexible, eDeploy provides a set of
helper functions.

	network() : the network interface shall be in the specified network

	gt(), ge(), lt(), le() : greater than (or equal), lower than (or
equal)

	in() : the item to match shall be in a specified set

	regexp() : match a regular expression

	or(), and(), not(): boolean functions. or() and and() take 2
parameters and not() one parameter.

This is a list of typical usage of helpers :

('network', '$nic0', 'serial', 'in("52:54:00:d6:85:55", "52:54:00:a5:d3:93", "52:54:00:6e:93:b9"')

('network', '$nic0', 'serial', '$$mac-nic0=in("52:54:00:d6:85:55", "52:54:00:a5:d3:93", "52:54:00:6e:93:b9"')

('network', '$nic0', 'serial', '$mac-nic0=not(regexp(^28:d2:))')

('network', '$nic0', 'ipv4', 'network(192.168.1.0/24)')

('disk', '$bootdisk', 'size', 'and(gt(20), lt(50)))'

('disk', '$bootdisk', 'size', '$size=le(20)')

('disk', '$disk', 'size', 'in(10, 20, 30)')

eDeploy also provides a place holder feature. In order to be reused
during the configuration process, one can use the values sent by the
hardware profile detection report, using the $var syntax in the specs
file. For example with the following sample

('network', '$eth', 'serial', '$mac'),

On the configure script of this profile, the administrator can use the
‘$mac’ variable that match the mac address and the “$eth’ variable that
match the interface with the values sent by the to be provisioned
server.

Corner cases when writing rules

Writing rules means trying to detect some specifics hardware components.
Some of them requires several rules to insure matching the proper
device.

The network devices are one of those as we need to detect :

	a mac address

	an ipv4 address

	a link status

	a port speed

	a port setup (auto negotiation, …)

First rules shall be the most discriminative
As the rules are taken one line after the other, it’s important to
insure the matching device from the first rule is the good one. It means
the first rules shall be as much discriminative as possible.

('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'link', 'yes'),
('network', '$eth-pub2', 'ipv4', 'network(172.17.0.0/16)'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),

The previous example is done the wrong way as the first rule is not
enough discriminative.

If we consider a physical host with the following configuration :

	eth0 with a network link establish and an ipv4 address set to
172.17.1.1

	eth1 with a network link establish and an ipv4 address set to
10.66.6.1

When eDeploy try to find which interface is ‘eth-pub1’, it will try to
find the first interface that have a link enabled. In this
configuration, eth0 match the first rule and so ‘eth-pub1’ is set to
eth0.

When the second rule is parsed, it check if ‘eth-pub1’ (eth0) is part of
the 10.66.6.0/24 network. This test fails since eth0 is part of the
172.17.0.0/16 network, the hardware matching is reported as failedas
eDeploy doesn’t try to find another interface if the a rule fails.

To insure this rule to be working properly, the highly discriminative
parameter shall be set first. In this example, the ipv4 network address
shall be put in first place. This way, ‘eth-pub1’is assigned to eth1 at
the first rule and the following match too. The hardware specification
file does match.

The correct spec file should have been written this way :

('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'ipv4', 'network(172.17.0.0/16)'),
('network', '$eth-pub2', 'link', 'yes'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),

Not having the same criteria when searching for network interfaces
When searching for criteria on some network interfaces it’s important to
use the same criteria on all the rules.

('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'vendor', 'Broadcom Corporation'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),
('network', '$eth-io1', 'vendor', 'Broadcom Corporation'),
('network', '$eth-io1', 'serial', '$mac-pub2'),
('network', '$eth-io1', 'link', 'yes'),

The previous rules set is incorrect and could lead to improper interface
matching and a non-matching profile while the hardware setup is correct.

Important: eDeploy doesn’t know about ordering. That means it doesn’t
test all interfaces like eth0, eth1, eth<n>. The order in which the
hardware is tested isn’t defined. The same apply for non NIC hardware.

Let’s consider the host that have the following setup:

	eth0 with a network link establish and an ipv4 address set to
10.66.6.1

	eth1 with a Broadcom network interface with a link enabled

	eth2 with a Broadcom network interface with a link disabled

‘eth-pub1’is associated with eth0 as it match all its requirements,
then, eDeploy search for a Broadcom interface. We have two options and
eDeploy could take eth1 for that. So ‘eth-pub2’is set to eth1.

Finally, eth-io1 is associated to eth2 as that’s a Broadcom nic too. But
as the last rule is to get a link set to yes, the matchinl fails since
the interface eth2 is down.

The important point is that removing a discriminative criteria in a rule
but using it later could leads to situation where some hardware devices
got matched while it should not.

When writing rules, it’s important to keep this in mind to avoid any
mis-matching profiles.

Creating the configure script

The configure script’s role is to setup the hardware aspects of the
server prior to the Operating System installation itself. During the
init script and based on the server hardware profile, a matching
configure script is sent back from eDeploy to the to be provisioned
server.

The configure script shall prepare the following items :

	creating a root filesystem mounted in /chroot

	by calling parted & mkfs to partition and format the
partition

	preparing the post-configuration files for the network configuration

	by creating some /post_rsync/etc/network* files using the config function

	define the role and the version to be deployed to this system

	by using set_role(role_name, role_version, bootable_disk)

	will be used to get the operating system during initial installation

bootable_disk = '/dev/' + var['disk']
run('dmsetup remove_all || /bin/true')
for disk, path in ((bootable_disk, '/chroot'),):
 run('parted -s %s mklabel msdos' % disk)
 run('parted -s %s mkpart primary ext2 0%% 100%%' % disk)
 run('dmsetup remove_all || /bin/true')
 run('mkfs.ext4 %s1' % disk)
 run('mkdir -p %s; mount %s1 %s' % (path, disk, path))

config('/etc/network/interfaces').write('''
auto lo
iface lo inet loopback

auto %(eth)s
allow-hotplug %(eth)s

iface %(eth)s inet static
 address %(ip)s
 netmask %(netmask)s
 gateway %(gateway)s
 hwaddress %(mac)s
 ''' % var)

 set_role('mysql', 'D7-F.1.0.0', bootable_disk)

Best Practices
Installing servers with eDeploy, the same configuration could be applied
several time to the same server. When considering the storage part of
the configuration, the configure script shall clean the disks and create
new partitions to format them.

As the same script will be applied on the same hardware, all the
computing of offset and size of each partition will be the same.
Creating new partitions triggers the kernel to rescan the storage
device. As the partition are still aligned, if some LVM metadata still
exists, the Linux kernel will register the Device Mapper devices
preventing any later formating.

It’s mandatory to release any Device Mapper devices detected by the
Linux Kernel by using the following command : ‘dmsetup remove_all’

Generating /post_rsync configuration
eDeploy philosophy is to alwaysprovide a clean OS tree. Some
configuration file cannot be handled by a configuration management
system such as Puppet or Chef, since they need to be configured at boot
time for the first boot (grub, network, fstab, etc…).

The /post_rsync folder gives an administrator the possibility to
configure those specific files in the profile configure script so they
overwrite the OS default configuration and are configured for the first
boot.

They respect the same filesystem as the operating system. (ie.
/etc/sysconfig/network => /post_rsync/etc/sysconfig/network)

Installation scenario:

	Server sends hw.py to eDeploy and get back a configure script

	Server runs the configure script

	create partition table

	create filesystem

	create /post_rysnc/{etc/sysconfig/network,boot/grub,etc/fstab}

3. Server syncs with eDeploy to retrieve the OS tree that matches its
role

	/post_rsync files overwrite the OS tree configuration files

	Bootloader is reinstalled

	Server is rebooted

What to put inside: every configuration file that is hardware related
(filesystems, networks, boot, etc…)

What not to put inside: every configuration file that is software
related. Configuration files that should be managed by a configuration
management tools.

Function helpers for configure scripts
Here are the helper functions that can be used in configure scripts:

	config(name):	create a config file that will automatically be created in /post_rsync.
You can use the following optional arguments to change the behaviour of
the function:

	fmod:	change the default mode of 0644 for the created file.

	mode:	change the default ‘w’ mode. Can be something like ‘a’ for appending.

	uid:	change the default uid from 0.

	gid:	change the default gid from 0.

	inject_facts(vars):

		inject puppet facts from the vars variable. This will allow to
use the variables into puppet manifests. The optional prefix
variable changes the hw_ prefix is put in front of the fact names
to avoid conflicts with standard facts.

	run(cmd):	run a command on the system.

	set_role(role, version, disk):

		set the eDeploy role and version to download and pass by the way the
disk where to install the bootloader.

Using the Configuration Management Database (CMDB)

Why using a CMDB ?
The CMDB is a simplified database made for

	providing a set of key/values to define properties of a deployed
system

	keeping a stable assignment of the properties assigned to a host
amongst the time

Deploying a cluster means defining a set of properties that each server
should use like :

	hostname

	ipv4 setup of the network interfaces

	ipv4 setup of the management interfaces (IPMI)

	any other specific setting a host may need to setup its initial
configuration

Creating a CMDB file
A sample CMDB file looks like the following :

generate({'gateway': '10.0.2.2',
 'ip': '10.0.2.3-253',
 'netmask': '255.255.255.0',
 'gateway-ipmi': '10.0.4.2',
 'ip-ipmi': '10.0.4.3-253',
 'netmask-ipmi' : '255.255.255.0',
 'hostname' : 'host001-250'
 })

The generate() function is an helper to define what shall be the list of
key/values that will be assign for a given host. In this example, each
host will receive variables to define

	an ipv4 address/netmask/gateway for the network interface and the
IPMI

	a hostname

This way of writing the CMDB is called ‘synthetic’.

Defining ranges or lists
The generate() supports syntax to defines ranges of elements.

Ranges are defined by using dashes ‘-‘.

The column symbol ‘:’ separates two ranges : this syntax requires having ranges on both side of this symbol.
If you need a single element out-of a serie, you’ll have to write a single value range like ‘10-10’.

	‘ip’: ‘10.0.2.3-253’ will create 250 hosts’s configuration (from IP .3 to .253)

	‘hostname’ : ‘host001-250’ will create hostname variable defined from host001 to host250.

	‘ip’: ‘10.0.2.1-3:5-5:7-9’ will avoid ip ending by .4 and .6 in the range 1-9.

	‘ip’: ‘10.0.2.1-5:20-15’ will select ip from 1 to 5 and 20 to 15 and keep them in this order.

Note that it is possible to define lists [] to get a pre-defined list of variables. (⚠ NOTE: until some point, the use of tuples () was allowed but is now deprecated)

	‘ip’: [‘10.0.2.1’, ‘10.0.2.5’, ‘10.0.2.8’] will select 3 ip addresses.

	⚠ ‘ip’: (‘10.0.2.1’, ‘10.0.2.5’, ‘10.0.2.8’) will not be expanded but kept as-is.

The following example will declare 12 hosts each with one matching mac address and role, but each host will have 3 users declared.
.. code:: python

	generate({‘hostname’: ‘os-ci-test1-12’,

	
	‘mac’: [‘00:22:19:57:74:a6’, # test1

	‘00:22:19:57:86:d2’, # test2
‘00:22:19:57:79:b0’, # test3
‘00:30:48:f4:26:06’, # test4
‘f4:ce:46:a7:ba:70’, # test5
‘00:22:19:57:74:79’, # test6
‘00:22:19:57:88:62’, # test7
‘d8:9d:67:1b:2a:b8’, # test8
‘d8:9d:67:1a:9b:1c’, # test9
‘d8:9d:67:1a:8f:58’, # test10
‘d8:9d:67:1a:41:7c’, # test11
‘d8:9d:67:32:12:a4’, # test12
],

	‘role’: [‘openstack-full’, # test1

	
‘openstack-full’, # test2
‘openstack-full’, # test3
‘install-server’, # test4
‘openstack-full’, # test5
‘openstack-full’, # test6
‘openstack-full’, # test7
‘openstack-full’, # test8
‘openstack-full’, # test9
‘openstack-full’, # test10
‘openstack-full’, # test11
‘openstack-full’, # test12
],

	‘users’: (‘Leif’,

	‘Eric’,
‘Hagar’),

})

The deflated version of the CMDB file
The first time a system matched a role, the CMDB is transformed from the
synthetic form to the deflated version of it. For the complete range of
systems defined in the synthetic version, an entry is created. The
following example is a partial view of the 250 systems created.

 [{'disk': 'vda',
 'eth': 'eth0',
 'gateway': '10.0.2.2',
 'gateway-ipmi': '10.0.4.2',
 'hostname': 'host001',
 'ip': '10.0.2.3',
 'ip-ipmi': '10.0.4.3',
 'ipmi-fake-channel': '0',
 'mac': '52:54:12:34:00:01',
 'netmask': '255.255.255.0',
 'netmask-ipmi': '255.255.255.0',
 'used': 1},
 {'gateway': '10.0.2.2',
 'gateway-ipmi': '10.0.4.2',
 'hostname': 'host002',
 'ip': '10.0.2.4',
 'ip-ipmi': '10.0.4.4',
 'netmask': '255.255.255.0',
 'netmask-ipmi': '255.255.255.0',
 },
 ….
]

The first entry got associated to a given system. System that have mac
address ‘52:54:12:34:00:01’ is now associated to the key/values set of
host001. The ‘used’parameter indicate this entry got assigned to a
host. This relationship between the physical host and this values will
be kept amongst the time.

In addition of the information expanded from the CMDB some other
parameters defined by the spec file appears. In this example the disk
name is reported as the associated entry is present in the spec file :

[('system', 'product', 'vendor', 'kvm'),
 ('system', 'product', 'name', 'edeploy_test_vm ()'),
 ('disk', '$disk', 'size', 'gt(1)'),
 ….]

The definition of the $disk variable inside the spec file to match the
system disk that is greater than 1GB is saved in the CMDB.

The second entry, and all the following one not shown here to keep
example short, is not assigned to any host since ‘used’ parameter is not
set.

Using $$variable
If a variable inside a spec file is using two dollar ‘$’ sign, it means
only this value will be used to match an entry into the CMDB.

This is useful if you want to match for example system tags to specific
settings like that

[('system', 'product', 'serial', '$$tag'),
 ('network', '$eth', 'serial', '$mac'),]

To insure the system that own the serial number TAG1 will be assigned to
‘host1’, you’ll define the CMDB as the following :

generate({'tag': ['TAG1', 'TAG2', 'TAG3'],
 'ip': '192.168.122.3-5',
 'hostname': 'host1-4'})

Using CMDB values inside the configure script
All variables defined inside the CMDB are available in the configure
script of the same role. They are stored into a python dictionary called
‘var’.

The following example shows how to retrieve values from the CMDB to
generate a network configuration file .

config('/etc/network/interfaces').write('''
auto lo
iface lo inet loopback

auto %(eth)s
allow-hotplug %(eth)s
iface %(eth)s inet static
 address %(ip)s
 netmask %(netmask)s
 gateway %(gateway)s
 hwaddress %(mac)s
 ''' % var)

The ‘eth’ and “mac’ variables of the var dictionary features the
interface name caught by match of the spec file (shown below) with the
hardware description and saved into the CMDB.

[('system', 'product', 'vendor', 'kvm'),
 ('system', 'product', 'name', 'edeploy_test_vm ()'),
 ('disk', '$disk', 'size', 'gt(1)'),
 ('network', '$eth', 'ipv4', 'network(10.0.2.0/24)'),
 ('network', '$eth', 'serial', '$mac'),
 ('network', '$eth', 'link', 'yes'),]

All the other variables, ip,netmask,gateway were only described in the
CMDB and were assigned by the eDeploy server at the hardware matching
time.

Setup the state file

The state file controls which profiles the eDeploy server will provision
and the number of time it will provision them.

The file itself is an array of tuple. Each tuple represent the profile
eDeploy can provision and the number of time it is allowed to provision
it.

For example (‘vm-debian’, ‘3’) means eDeploy can provision three VMs
with the profile ‘vm-debian’. Another example would be (‘vm-centos’,
‘*’). which means eDeploy can provision an unlimited number of VMs with
the profile ‘vm-centos’. Role with 0 will not be deployed.

A full state file looks like this:

 [('hp', '4'), ('vm-centos', '*'), ('vm-debian', '3'), ('kvm-test',
'0')]

It is really important to understand that roles are matched in the order
they appear on this file. So if a server hardware matches ‘hp’ and ‘vm’,
only the ‘hp’ role will be applied.

Another important consideration is that the decrementation happens when
the hardware matching is validated during the call to upload.py thus it
doesn’t strictly mean that the server provisionning went well all the
way. A user might see this number decrement and have a server whose
provision process failed in the way. This might evolve in future
releases.

Note: the state file shall be writable by the httpd user as it will be
up to the upload.py to update it.

Boot the target server

To start the deployment, boot the targeted server by using the proper
boot device regarded the kind of deployment you choose (PXE versus USB).

Debugging

Enable SSH server on target server

If the eDeploy configuration specifies the ‘ONFAILURE=console’ option,
an SSH server will be spawned if the deployment fails. If a permanent
SSH server is requested, the ‘DEBUG=1’option can be set.

APPEND SERV=192.168.122.45 RSERV=192.168.122.45 DEBUG=1 HTTP_PATH=/

Note: The debugging SSH server is started on port 2222.

Centralize Logging (UPLOAD_LOG=1)

With the UPLOAD_LOGflag in the boot file, eDeploy allows every
provisioned server to upload their log file automatically to the edeploy
server.

APPEND SERV=192.168.122.45 RSERV=192.168.122.45 UPLOAD_LOG=1 HTTP_PATH=/

Log file content
The log file archive concatenate several different log files together.
In order :

	Kernel Command Line (/proc/cmdline)

	Content of /configure

	Content of dmesg

Log file location
Upon one of the following action during the init script (give_up,
do_reboot, do_halt, do_console), an archive is made out of the file’s
content mentionned above and sent to the upload.py script. The upload.py
script will drop the archive in
$LOGDIR/${vendor}-${product}-${serial}.log.gz.

vendor, product and serial variables are from the dmidecode function,

Note:It’s mandatory to let the httpd user having the right access to
$LOGDIR to allow such file creation

Server side upload.py debug

If the server is misconfigured, the upload.py python script might fail.
It could be a permission issue, a resource missing, etc… Those kinds of
errors will not be obvious from the client (Target server) side. To be
able to figure out what is happening, all those errors are logged in the
server, in the file specified for error_log in your httpd
configuration.

Try match - Debugging match failures

At any point in time an administrator can check if an hardware
configuration matches a specific spec files without having to run the
provisioning process. eDeploy provides a try_match.py utility whose
sole purpose is to print False if spec does not match the hardware
description file (.hw) it was run against, else print the spec file.

python try_match.py <hw_file> <spec_file>

Note:try_match.py is located under edeploy/server/try_match.py

Manage the Upgrade Process (In Detail)

What the upgrade process should do ?

The terminology ‘upgrade’ here could be actually misleading, it should
be called migration. With eDeploy, and based on the philosophy of the
project, one can do an upgrade, as much as a downgrade following the
exact same process.

A migration will take your system from state ‘s’ to state “s1’ based on
the specification provided in an ‘s’ to “s1’upgrade file. The user is
free to create the analogue migration file so the system can be moved
back from state ‘s1’ to “s’.

How to create an upgrade ?

The upgrade file

In an upgrade file the user should list the exact command (package
installation) the server will need to take to go from state s to state
s1.

The upgrade file follows a strict naming convention. This is really
importantto understand that if the file is not named accordingly the
upgrade will not happen.

${ROLE}_${FROM}_${TO}.upgrade

	${ROLE}
	The role the server is bound to

	${FROM}
	The version number the server is currently in

	${TO}
	The version number the server will reach

Example :mysql_D7-F.1.0.0_D7-F.1.0.1.upgrade

This example defines the upgrade file to take a MySQL (role) server from
version D7-F.1.0.0 to D7-F.1.0.1

The actual content of the file list the package that will be installed
from state s to state s1. Find below the content of the
mysql_D7-F.1.0.0_D7-F.1.0.1.upgrade file.

. common # Load function's
library

install_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

In version D7-F.1.0.0, the server will be in a state where
mysql-server5.5 and apache2 are not installed, once the upgrade script
will be run mysql-server5.5 and apache2 will be part of the D7-F.1.0.1

The downgrade file would be called
mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade, and instead of using
install_packagesthe user will call remove_packages.

Run ./upgrade-from script

As stated earlier, the upgrade file is a description file. In itself it
takes no action. The ./upgrade-from script is the pieces that will do
the actual work. This is the how it works :

1. Copy base version

2. Update the repositories metadatas

3. Run the upgrade script

 4. Set defaults for exclude and add_only file if they don’t exist

5. Do some cleaning

Once the script run, a new version of the OS is available in the
appropriate directory, ready to be queried by eDeploy clients.

Customize add_only / exclude / pre / post files

By it’s core principle, an upgrade brings change to the system. edeploy
provides native OS tree. To load all the tree at installation time is
fine, but during upgrades an administrator might not want to erase every
files that is already present in the server. Most notably file presents
in /var/lib

To give an administrator a great deal of flexibility edeploy provides :

	Two files for explication exclusion (exclude) and inclusion
(add_only)

	Two hooks before (pre) and after(post) the upgrade takes place

Those files are located on a specific path $METADATADIR/$FROM/$ROLE/$TO

	METADATDIR : From /etc/edeploy.conf

	FROM : Version to migrate from

	ROLE : The role concerned by the migration

	TO : Version to migrate to

Note : edeploy creates default files for exclude and add_only, but it
is up to the administrator to define its own pre/post hooks

add_only

When an administrator just want a specific set of files during an
upgrade, those files could be specify in a file per line model in the
add_only file. During the rsync process only those files will be
synced.

Note:The rsync process works in a two phase fashion, the first run
consider onlythe exclude file while the second run consider onlythe
add only file

exclude

When an administrator want to keep a specific set of files untouched
during an upgrade, those files could be specify in a file per line model
in the exclude file. During the rsync process all the files but those
mentioned in exclude will be synced

Note:The rsync process works in a two phase fashion, the first run
consider onlythe exclude file while the second run consider onlythe
add only file

pre

This hook is triggered before the two rsync phases mentioned earlier. It
can allow someone to do a db backup, synchronize with an other server,
or any other use that can come in mind.

post

This hook is triggered after the two rsync phases mentioned earlier. If
the post script return value is 100 then a reboot will be triggered. It
can allow someone to resynchronize/reload what has been save during pre
or any other task that can come in mind.

Run the upgrade on the client

edeploy list - list available update

On servers provisioned by eDeploy, a user has an edeploy command
install. A user can list the available user by simply running edeploy
list. As per eDeploy philosophy, it will list both downgrade and
upgrade migrations.

edeploy test_upgrade VERSION - simulate the upgrade

Before doing any upgrade, and administrator should run test-upgrade
first. test-upgrade will perform a trial run with no changes. It uses
the –dry-run option from rsync to run.

edeploy upgrade VERSION - perform the actual upgrade

Perform the actual upgrade. In order, the pre script is executed, then
the rsync (exclude, add_only) is run, then the post script is executed,
finally the metadata - Version and Role- are updated. If the process
performed successfully, the server will be rebooted.

edeploy verify - verify the integrity of the current state

Verify the integrity of the system by doing a delta between the data
stored in the OS image server and the local system.

Upgrade post-configuration policies

There are two ways to deal with post configuration when using eDeploy.
The user either assumes that eDeploy only deploys clean, genuine
environment and thus rely on a configuration management system to
reconfigure the servers. Or, the user can define a list of file to
exclude during the upgrade, this will lead to all system being updated
but those files. Here a review of the two different policies.

Puppet

Puppet is a configuration management system. It sole purpose is to make
sure the current configuration on its agent is strictly identical to the
one defined on its master for a given agent, no matter what is the
current state of the server. So at each run Puppet will apply the
modification necessary to upgrade the system so it is in a consistent
state. This tool is ideal to reconfigure a system after a eDeploy
upgrade. This way the user is certain that the system is clean (eDeploy)
and well configured (Puppet)

Exclude during the upgrade generation

For user who do not have any configuration management system in place,
it is still possible to specify a list of file which will be exclude
from the rsync. Users needs to be extremelycareful that the list of
file they specify is exhaustive, else the upgrade might result in data
loss.

Manage Downgrades

As explained in Manage The Upgrade Process, eDeploy handles
bi-directional migrations, which means it also handles downgrade.

To enable a downgrade, the administrator follows the exact same steps as
for creating an upgrade. Two considerations needs to be taken in account
to create a downgrade :

File name syntax

As mentioned earlier, an upgrade (hence downgrade) file name must
follow this syntax :

${ROLE}_${FROM}_${TO}.upgrade

For a downgrade, the only difference with an upgrade is the that the
FROMvariable will be higher than the TOvariable.

mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade

Downgrade script content

The purpose of this script is to be able to bring back a server to an
earlier profile version. Hence, the content of this file should be the
symetrically opposite of the ugrade script whenever possible.

As a reminder, much like upgrades, downgrades can only move from one
version to it’s closest one, meaning to downgrade from 1.0.2 to 1.0.0,
the administrator first need to move from 1.0.2 to 1.0.1 and then from
1.0.1 to 1.0.0

When the mysql_D7-F.1.0.0_D7-F.1.0.1.upgradelook like this

. common # Load function's
library

install_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

The equivalent mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade should look like
this

. common # Load function's
library

remove_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

Warning : When packages wise eDeploy can handle downgrades well, an
administrator needs to make sure that running application won’t break
(incompatibility, etc…) when a server is downgraded. This is not eDeploy
responsibility to take care of that sort of issues

Developingon eDeploy

Git Organisation

The git repository is organized with the following directories

Ansible/

This directory owns every about orchestration.

Build/

This directory features all roles that could be built.

Config/

This directory contains all hardware profiles (.spec), configure scripts
(.configure), CMDB files (.cmdb) and the state file.

Debian/

This directory provides all the debian packaging content

Grapher/

This directory provides a tool to plot performances reported by the
Automatic Health Check tool

Metadata/

This directory is used to hosts metadata generated by the upgrade tool.

Server/

This directory includes all the code that run on an eDeploy server under
the CGI environment.

Src/

This directory have all the python code used by the eDeploy deployment
and Automatic Health Check tools to detect the hardware.

Tests/

This directory provides a testing suite.

Testing eDeploy

When developing on eDeploy, it’s important to test modifications in a
easy way. It’s pretty unusual to have a couple of servers available only
for testing eDeploy.

The testing suite is doing the following tasks :

	building a role

	building the deployment tool

	start a Virtual machine with deployment tool booted in PXE mode

	install the Virtual machine with the targeted role

	halt the Virtual machine once installed

	power on the Virtual machine again to boot the installed Operating
System

Building the role & deployment tool

No much things to say here, the roles are built like any other role as
described in this documentation.

Start the virtual machine

The testing suite will spawn a kvm virtual machine and consider the
content of the ‘tests/tftpboot’ directory as tftp root for the PXE
booting.

The PXE booting is done inside kvm without any requirement on the
infrastructure. Kvm will emulate the DHCP/PXE service.

Install the virtual machine

This step will work exactly the same as on a real deployment but the
performance will obviously different.

Halt the virtual machine & power it up again

The default behavior is to halt the virtual machine after the
installation to test the bootloader configuration. This could be tweaked
for debugging purposes by changing the default value of ONSUCCESS or
ONFAILURE values from the ‘tests/tftpboot/pxelinux.cfg/default’
configuration file. Please refer to this user manual to find the
appropriate values.

Starting the tests

To make testing easier, eDeploy provides a testing target inside the
build/directory.

Testing mode have be used like :

make test TEST_ROLE=<role> DIST=<dist> DVER=<dver>

The ‘role’ is any of the one available inside the config/directory.

The ‘dist’ shall be any of the Debian or Ubuntu version (wheezy or
precise).

Note: Redhat and Centos roles cannot be yet tested this way since the
deployment tools requires python 2.7 while theses Linux distribution
provides only a 2.6 version of it.

The ‘dver’ is just a string which represents the Linux distribution and
version you choose like D7 for Debian 7.

APPENDIX

APPENDIX A

To get a complete overview of the various hardware components and
settings that can be used in a specification rule of a .spec file, an
exhaustive table reports items that can be matched.

The discrimination level (low,medium,high,unique) reports how much this
information can be trust to discriminate a system for another. The
‘unique’ level reports this information shall make this system unique in
your infrastructure.

Hard drive

eDeploy is able to report disks’s properties from

	Regular SATA controllers or logical drives from Raid Controllers

	Disks attached to a Hewlett Packard Raid controller (hpsa)

	hpsa
	Detect HP RAID controller configuration
	Sample output
	Discrim. level

	size
	Size of the raw disk
	(‘disk’, ‘1I:1:1’, ‘size’, ‘300’)
	Medium

	type
	Type of the raw disk
	(‘disk’, ‘1I:1:1’, ‘type’, ‘SAS’)
	Low

	slot
	Raw disk slot’s id
	(‘disk’, ‘1I:1:1’, ‘slot’, ‘0’)
	Medium

	disk
	Detect disks Sample output
	
	

	size
	Size of the disk
	(‘disk’, ‘sda’, ‘size’, ‘899’)
	Medium

	vendor
	Vendor of the disk
	(‘disk’, ‘sda’, ‘vendor’, ‘HP’)
	Medium

	model
	Model of the disk
	(‘disk’, ‘sda’, ‘model’, ‘LOGICAL VOLUME’)
	High

	rev
	Firmware revision of the disk
	(‘disk’, ‘sda’, ‘rev’, ‘3.42’)
	Medium

	WCE
	Write Cache Enabled
	(‘disk’, ‘sda’, ‘WCE’, ‘1’)
	Low

	RCD
	Read Cache Disabled
	(‘disk’, ‘sda’, ‘RCD, ‘1’)
	Low

System

Note: Product information are provided by the DMI structures of the
host. These information are not alwaysprovided by the hardware
manufacturer.

	product
	System Information
	Sample Output
	Discrim. Level

	serial
	Serial number of the HW
	(‘system’, ‘product’, ‘serial’, ‘XXXXXX’‘)
	Unique*

	name
	Product name
	(‘system’, ‘product’, ‘name’, ‘ProLiant DL360p Gen8 (654081-B21)’)
	High

	vendor
	Vendor name
	(‘system’, ‘product’, ‘vendor’, ‘HP’)
	Medium

*: if provided by the hardware manufacturer

	ipmi
	Detect IPMI interfaces
	Sample output
	Discrim. Level

	ipmi
	The IPMI channel number
	(‘system’, ‘ipmi’, ‘channel’, 2)
	Low

	ipmi-fake
	Fake IPMI interface for testing
	(‘system’, ‘ipmi-fake’, ‘channel’, ‘0’)
	Low

Firmware

Note: Firmware information are provided by the DMI structures of the
host. These information are not alwaysprovided by the hardware
manufacturer.

	bios
	Detect BIOS informations
	Sample output
	Discrim. Level

	version
	Version of the BIOS
	(‘firmware’, ‘bios’, ‘version’, ‘G1ET73WW (2.09)’)
	Medium

	date
	Date of the BIOS release
	(‘firmware’, ‘bios’, ‘date’, ‘10/19/2012’)
	Medium

	vendor
	Vendor
	(‘firmware’, ‘bios’, ‘vendor’, ‘LENOVO’)
	Low

Network

	network
	NIC informations
	sample output
	Discrim. Level

	serial
	Mac address
	(‘network’, ‘eth0’, ‘serial’, ‘d8:9d:67:1b:07:e4’)
	Unique

	vendor
	NIC’s vendor
	(‘network’, ‘eth0’, ‘vendor’, ‘Broadcom Corporation’)
	Low

	product
	NIC’s description
	(‘network’, ‘eth0’, ‘product’, ‘NetXtreme BCM5719 Gigabit Ethernet PCIe’)
	Medium

	size
	Link capability in bits/sec
	(‘network’, ‘eth0’, ‘size’, ‘1000000000’)
	Low

	ipv4
	IPv4 address
	(‘network’, ‘eth0’, ‘ipv4’, ‘10.66.6.136’)
	High

	ipv4-netmask
	IPv4 netmask
	(‘network’, ‘eth0’, ‘ipv4-netmask’, ‘255.255.255.0’)
	Low

	ipv4-cidr
	IPv4 cidr
	(‘network’, ‘eth0’, ‘ipv4-cidr’, ‘24’)
	Low

	ipv4-network
	IPv4 network address
	(‘network’, ‘eth0’, ‘ipv4-network’, ‘10.66.6.0’)
	Medium

	link
	Physical Link Status
	(‘network’, ‘eth0’, ‘link’, ‘yes’)
	Medium

	driver
	NIC’s driver name
	(‘network’, ‘eth0’, ‘driver’, ‘tg3’)
	Low

	duplex
	NIC’s duplex type
	(‘network’, ‘eth0’, ‘duplex’, ‘full’)
	Low

	speed
	NIC’s current link speed
	(‘network’, ‘eth0’, ‘speed’, ‘10Mbit/s’)
	Medium

	latency
	PCI latency of the network device
	(‘network’, ‘eth0’, ‘latency’, ‘0’)
	Low

	autonegotiation
	NIC’s auto-negotiation
	(‘network’, ‘eth0’, ‘autonegotiation’, ‘on’)
	Low

Cpu

Per CPU

	cpu
	CPU informations
	Sample output
	Discrim. Level

	physid
	CPU’s physical id
	(‘cpu’, ‘physical_0’, ‘physid’, ‘1’)
	Low

	cores
	CPU’s number of cores
	(‘cpu’, ‘physical_0’, ‘cores’, ‘2’)
	Medium

	enabled_cores
	CPU’s number of enabled cores
	(‘cpu’, ‘physical_0’,’ enabled_cores’, ‘2’)
	Medium

	threads
	CPU’s number of threads
	(‘cpu’, ‘physical_0’, ‘threads’, ‘4’)
	Medium

	product
	CPU’s identification string
	(‘cpu’, ‘physical_0’, ‘product’, ‘Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz’)
	High

	vendor
	CPU’s vendor
	(‘cpu’, ‘physical_0’, ‘vendor’, ‘Intel Corp.’)
	Low

	frequency
	CPU’s internal frequency in Hz
	(‘cpu’, ‘physical_0’, ‘frequency’, ‘1200000000’)
	Low

	clock
	CPU’s clock in Hz
	(‘cpu’, ‘physical_0’, ‘clock’, ‘100000000’)
	Low

Aggregation for all CPUs

	cpu
	CPU aggreg. informations
	Sample output
	Discrim. Level

	number (physical)
	Number of physical CPUs
	(‘cpu’, ‘physical’, ‘number’, 2)
	Medium

	number (logical)
	Number of logical CPUs
	(‘cpu’, ‘logical’, ‘number’, ‘8’)
	Medium

Memory

Note: Memory information are provided by the DMI structures of the
host. These information are not alwaysprovided by the hardware
manufacturer.

	memory
	Detect Memory informations
	Sample output
	Discrim. Level

	total
	Amount of memory on the host (in Bytes)
	(‘memory’, ‘total’, ‘size’, ‘17179869184’)
	High

	size
	Bank size (in Bytes)
	(‘memory’, ‘bank:0’, ‘size’, ‘4294967296’)
	Medium

	clock
	Memory clock speed (in Hz)
	(‘memory’, ‘bank:0’, ‘clock’, ‘667000000’)
	Low

	description
	Memory’s description
	(‘memory’, ‘bank:0’, ‘description’, ‘FB-DIMM DDR2 FB-DIMM Synchronous 667 MHz (1.5 ns)’)
	Medium

	vendor
	Memory’s vendor
	(‘memory’, ‘bank:0’, ‘vendor’, ‘Nanya Technology’)
	Medium

	serial
	Memory’s serial number
	(‘memory’, ‘bank:0’, ‘serial’, ‘C7590943’)
	Unique*

	slot
	Physical Slot of this Bank
	(‘memory’, ‘bank:0’, ‘slot’, ‘DIMM1’)
	High

	banks
	Number of memory banks
	(‘memory’, ‘banks’, ‘count’, 8)
	Medium

*: If provided by the hardware manufacturer

Infiniband

Per card

	infiniband
	Detect Infiniband informations
	sample output
	Discrim. Level

	card_type
	IB card’s type
	(‘infiniband’, ‘card0’, ‘card_type’, ‘mlx4_0’)
	Medium

	device_type
	IB card’s device type
	(‘infiniband’, ‘card0’, ‘device_type’, ‘MT4099’)
	Medium

	fw_version
	IB card firmware version
	(‘infiniband’, ‘card0’, ‘fw_version’, ‘2.11.500’)
	High

	hw_version
	IB card’s hardware version
	(‘infiniband’, ‘card0’, ‘hw_version’, ‘0’)
	Low

	nb_ports
	IB card number of ports
	(‘infiniband’, ‘card0’, ‘nb_ports’, ‘2’)
	Low

	sys_guid
	
	(‘infiniband’, ‘card0’, ‘sys_guid’, ‘0x0002c90300ea7183’)
	Unique

	node_guid
	
	(‘infiniband’, ‘card0’, ‘node_guid’, ‘0x0002c90300ea7180’)
	Unique

Per port

	infiniband
	Detect Infiniband informations
	sample output
	Discrim. Level

	state
	Interface state
	(‘infiniband’, ‘card0_port1’, ‘state’, ‘Down’)
	High

	physical_state
	Physical state of the link
	(‘infiniband’, ‘card0_port1’, ‘physical_state’, ‘Down’)
	High

	rate
	Speed in Gbit/sec
	(‘infiniband’, ‘card0_port1’, ‘rate’, ‘40’)
	High

	base_lid
	
	(‘infiniband’, ‘card0_port1’, ‘base_lid’, ‘0’
	Low

	lmc
	
	(‘infiniband’, ‘card0_port1’, ‘lmc’, ‘0’)
	Low

	sm_lid
	
	(‘infiniband’, ‘card0_port1’, ‘sm_lid’, ‘0’)
	Low

	port_guid
	
	(‘infiniband’, ‘card0_port1’, ‘port_guid’, ‘0x0002c90300ea7181’)
	Unique

 Copyright 2014, eNovance.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	eDeploy 1.0 documentation

Index

 Copyright 2014, eNovance.
 Created using Sphinx 1.3.1.

 _images/image00.jpg
Openstack
Common

_images/sum-raw.png
KB/sec

Study of storage-read-rand bandwicth sum from 1 to 81 hosts (step=6) : 2014_10_16-13h22

Benchmark setup : 1 random threads per host, blocksize=4k, mode=random, access=read, runtime=10 seconds, 3 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs
0S : Red Hat Enterprise Linux Server release 7.0 (Maipo) running kemel 3.10.0-123.¢17.x86_64, cpu_arch=x86_64

9e+06 : : :
—— 2014_10_16-13n22
8e+06
7e+06
66+06
5406
4e+06 -
3406

2e+06 —

1e+06 —

66 72 78

81

42 48 54
Number of Hosts

1 6 12 18 24 30 36

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_images/jitter-mean-raw.png
econds (ms)

Study of storage-read-rand bandwidth jitter-mean from 1 to 81 hosts (step=6) : 2014_10_16-13h22

Benchmark setup : 1 random threads per host, blocksize=4k, mode=random, access=read, runtime=10 seconds, 3 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs
0S : Red Hat Enterprise Linux Server release 7.0 (Maipo) running kemel 3.10.0-123.¢17.x86_64, cpu_arch=x86_64

90

T T
—+— 2014_10_16-13n22

10 I I I I I I I I I I I I I
1 6 12 18 24 30 36 42 48 54 60 66 72 78 81

Number of Hosts

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_images/image02.jpg
eDeploy
server

OS Image
server

Search for
matching role
for the hw
description

Sending hw description

Requesting Role’s |Operating System

Operating [System

Role Configuration script
—_—

Server to

be

installed

Hardware detection

Preparing server with
configuration script

' Extracting OS

Applying post-configuration
and
installing bootloader

_images/deviance-raw.png
KB/sec

Study of storage-read-rand bandwidth deviance from 1 to 81 hosts (step=6) : 2014_10_16-13h22

Benchmark setup : 1 random threads per host, blocksize=4k, mode=random, access=read, runtime=10 seconds, 3 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs
0S : Red Hat Enterprise Linux Server release 7.0 (Maipo) running kemel 3.10.0-123.¢17.x86_64, cpu_arch=x86_64

70000 : : :
—— | 2014_10_16-13n22
60000

50000

40000

30000

20000+

10000+

78

81

42 48 54
Number of Hosts

24 30 36

_images/compared-job_duration-mean-raw.png
seconds (s)

Study of network-bw tcp banduwidth job_duration-mean from 2 to 54 hosts (step=4) :
mtu=1600 vs mtu=1500

Benchmark setup : 1 banduwidth threads per host, blocksize=1310172, runtime=10 seconds, 2 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs
0S : Red Hat Enterprise Linux Server release 6.5 (Santiago) running kemel 2.6.32-431.29.2.¢16.x86_64, cpu_arch=x86_64

135

13+

125

12

115

11+

105

10

T
mtu=1600
mtu=1500
Expected value (10.00)

8 12 16 20 24 28 32 36 40 44 48 52
Number of Hosts

AHC.html

 Navigation

 		
 index

 		eDeploy 1.0 documentation »

Automatic Health Check (AHC) - User Guide

Benchmarking infrastructures made easy

Table of Contents

		Automatic Health Check (AHC) - User Guide
		Benchmarking infrastructures made easy
		Introduction on the need of benchmarking infrastructures

		What AHC is made for ?

		AHC’s concepts
		Reproducibility

		Be as close as possible to the hardware

		Constant time benchmarking

		Do no trust humans

		Kill any source of doubts on software

		Results should not be stored without context

		Tools used in AHC
		CPU & Memory Benchmarking

		Storage Benchmarking

		Network Benchmarking

		Standalone benchmarking
		Concept

		Building AHC

		Using AHC with an USB key

		Using AHC with a PXE booting

		Boot options

		Configuration of server side

		Benchmark definition
		CPU

		Memory bandwidth

		Storage

		Getting the results

		Analyzing the results
		Selecting files to analyze

		Grouping hosts

		Using the SUMMARY view (default)

		Using DETAIL view to analyze the raw performance

		Distributed benchmarking
		Concept

		Building DAHC

		Using DAHC with the disk image

		Using DAHC with a PXE booting

		Boot options

		Configuration of server side

		Benchmark definition
		Global settings

		Common variables for jobs

		Specific options for CPU jobs

		Specific options for Memory jobs

		Specific options for Storage jobs

		Specific options for Network jobs

		Sample job file

		Getting the results

		Analyzing the results
		Selecting files to analyze

		Reading the results
		Mean performance

		Sum performance

		Standard Deviation

		Jitter

		Job duration

		Simultaneous plotting

Introduction on the need of benchmarking infrastructures

An infrastructure s made of physical servers, networking components and some software,
and is made for delivering a service. Once the first step of racking, connecting everything is done,

it’s time to ask yourself those questions :

		“Are all my servers performing as expected ?”

		“Is the level of performance the expected one ?”

If you bought those servers together, the usual answer is:

		“Yes, they are supposed to be and perform the same”

Is it enough to get into production ? What would be the consequences of a mostly-failing component on the global infrastructure ?

To get a clear view of your infrastructure state, you have to benchmark it.

What AHC is made for ?

AHC is made for answering this simple question:

		“Are my servers running almost normally ?”

The almost part of the sentence is very important. This tool does not try to benchmark everything in every possible configuration but make a best-effort estimation of your server’s capabilities.
Having a quick overview of a system to insure the basic features are working well. It’s usually enough to track down weak systems.

AHC’s concepts

Reproducibility

Software configurations/changes is a big concern when performing performance tests. It’s mandatory to reduce any possible source of annoyance that could have a positive or negative impact on the performance (like a crontab, a change in the benchmark tool itself or patch on the Linux Kernel). As we try to setup a performance indicator to compare a set of servers, keeping the same OS over server and time is a key point to consider.

The main idea here is to create a custom operating system that embeds the less amount of possible software with the Linux distribution of your choice. Ideally, the result is a bootable disk image or a kernel and ramfs files that could be booted over PXE.

The main benefit of this approach is being able to boot anytime your servers in order to run a benchmark test series without making any change on your production environment.

As a result, the performance metrics will always be provided on the same software environment letting as a unique difference between tests and over-time the hardware you have. It’s so possible to perform some differential analysis between install time anytime later if some issues are occurring on this particular server. This also could be used to ensure that a new server at least as performing as the other servers of a given pool..

AHC is part of the eDeploy project as a role that performs the task of selecting the main packages required to perform all this benchmark series. The resulting Operating System is now strongly versioned, archivable and available at any time. Booting becomes very easy by using a USB key on standalone servers or via PXE on an already setup network.

Be as close as possible to the hardware

Benchmarking an infrastructure means being able to define how every single component (cpu, ram, storage, network) performs. To understand every single defect, it’s important to be as close as possible to the hardware. This does have an impact on the tool to select and the associated parameters.

What we don’t want to benchmark :

		caching effects

The memory is usually used on every system to speed-up the access time to a given resource. Using memory turns milliseconds or even seconds to reach an information into {micro|nano}seconds.
It will be so mandatory to ask tools to avoid explicit caching.

		software optimization to hide hardware defects

To optimize the usage of a resource, operating systems are providing software layers to optimize the access to the resource by aggregating requests or rescheduling IOs.
Filesystems are known to do this kind of work. As we want to measure the state of every single device of the infrastructure, testing it through a filesystem hides part of the reality of this device.
Storage benchmarking will have so to test the block device directly instead.

Constant time benchmarking

It’s a common mistake to use tools that try to see how long it takes to process a given amount of data. Benchmark results are usually expressed in ‘unit per time‘ like Megabytes per seconds, Gigabit per seconds. If time is not a fixed element, the benchmark aren’t really comparable : processing 1GB of data on a system that consumes them at 100MB/sec last 10 seconds while it will take 100 seconds on another that performs at 10MB/sec.

Comparing both results when comparing a 10sec run versus a 100sec run. This huge difference of running time can hide or reveal various unexpected events like a crontab running in background. Another annoyance is the unpredictability of the required time to run a particular test on a set of non-similar servers.

Fixing the time for a test answer the question “How much data can I process in this amount of time ?” instead of “How much time do I need to process this amount of data ?”

The benchmarking tools have to support time-based benchmarks.

Do no trust humans

Automation is a key element on the success of a good benchmark suite. Benchmark tools are usually offering various options and usage.
Selecting or missing a particular option could totally change the meaning of a test.

In some storage testing tools, if you forget to disable the use of the Linux cache, you have a great chance of testing more your memory than your disk.
If you are not aware of this behavior or if you missed the setting, the interpretation of results could be very misleading.

Humans are weak machines, even if you read something wrong, your brain with make you read what you expected to read more than the mistake.

A great example of this effect is shown in the following images:

[image: _images/find_the_8.jpg]
[image: _images/spelling-test.png]
To avoid any human mistake, having a tool that runs automatically a set of defined commands is an important protection against any misuse of tools leading to wrong results.

Kill any source of doubts on software

Mastering your software configuration is required to get consistency over time and systems. Trying to estimate the performance of a given hardware requires the benchmark tool to be the sole one using a particular resource. The more processes will use this resource at the same time as the benchmark the less reliable will be the result.

It’s pretty obvious that performing some rsync/logrotate/database IOs while trying to estimate disk’s performance isn’t a good way to get a coherent result. Those example are pretty obvious, but at the time you run your benchmark, it could be a pretty complicated being 100% sure that not a single non-expected task ran. On an infrastructure which is in production, this could turn into a complex task disabling all possible sources of annoyance.

The way to go is embedding all required tools and automation scripts into your own live operating system. The easiest way to get a clean operating system for a benchmark, is to generate one with the minimum dependencies. It’s almost like creating a minimal system (like debootstrap on debian), install the benchmarking tools you need, no graphic server and for sure, no crontab at all. Once this minimal system is setup, create a ramfs with it and boot on it with your favourite bootloader (pxelinux, extlinux, grub, …). This steps are done automatically by eDeploy.

Having an under-control operating system that will be the same over servers and time remove any possible doubt of a background process running at the same time as your benchmark. It become possible running the benchmark in a controlled fashion on an already installed server. If you have any doubt of a particular hardware, reboot the server in this under-control operating system, perform the benchmark and voilà.

Results should not be stored without context

Keeping the hardware description/configuration attached to your performance results is an efficient way to “remember” what was the context. It could be used to determine that a particular under-performance could be linked to a hardware change or configuration.

The more details about your hardware you have, the easier it will be to determine the link between a change and a performance issue/increase.

Tools used in AHC

CPU & Memory Benchmarking

The Sysbench project offer a single interface to compute both CPU computing power and memory bandwidth. Its main advantages are a lightweight source code, a GPL licensing, a threading option and a time based mode.

This benchmark does not test all features and instructions the CPU have and this is not the objective to do it neither. Sysbench reports a number that represents a global level of performance. This number doesn’t really have a unit humanly understandable,it is much more like a relative performance indicator.

About the memory module of Sysbench, it performs IOs of a given block size to the main memory. It’s pretty straightforward to understand. The result of this benchmark is a memory bandwidth in MB/sec reported during a constant time.

Storage Benchmarking

When thinking about storage benchmarking tools, fio comes immediately in mind. Mainly developed under the GPL license by Jens Axboe (Linux Kernel Maintainer of the Block Layer) , this tool is by far the most versatile tool I’m aware of. As we try to estimate the performance of the hardware by itself, removing the filesystem layer is mandatory.

Filesystems are complex beasts that have various optimization and behaviors that are useful for users but could hide some defects or introduced non desired latencies. The more software on the data path, the more complex is the analysis of the results. Making the same test on two different filesystems would lead to pretty different results. As we want to be as clause a possible to the hardware, it’s important to remove this source of possible annoyance.

Fio’s ability to perform IOs at the block level is a very interesting feature here. Fio can be scripted to perform the exact IO pattern you need while keeping under control the time you spend on your run and ensuring that it runs without any cache Layer from the Linux Kernel (O_DIRECT).

Network Benchmarking

The Netperf project, under a BSD-like license, is clearly one of the most known and used tool over the Linux world. It provides a very simple command line, a port based pairing, TCP and UDP support and up to 20 different scenario. This tool is used to report the network bandwidth or latencies that a set of servers can generated simultaneously. The performance is expressed in Gigabit/sec or messages per seconds.

Standalone benchmarking

Concept

When delivering a new platform, you need to check every single server by its own with the minimum dependencies to start this task. The standalone mode of AHC is made for testing local components (storage, cpu, memory) of a given server. It will inspect them one by one to provide a detailed view of their sanity and the resulting performance.

Building AHC

Building AHC requires using eDeploy and select a particular Linux distribution like Debian|Ubuntu or Redhat|Centos.

A simple command is enough to build it like :

		for debian :

make health-img SERV=<ip_of_http_server>

		for Redhat :

make health-img SERV=<ip_of_http_server> DVER=RH7.0 DIST=redhat ISO_PATH=<path_to_rhel-server-7.0-x86_64-dvd.iso> RHN_USERNAME='rhn_user@domain.com' RHN_PASSWORD='rhn_password'

This build process generates a bootable disk image like health-RH7.0-1.6.0.img but also a kernel and a ramfs named health.pxe. It is so possible to boot AHC by using an USB key or PXE.

The SERV= option allow you to define on which server the benchmark results will be uploaded.

Using AHC with an USB key

The USB key is featuring a VFAT partition to save results. After the benchmarking, plugging the USB key back to your computer will expose the files from the VFAT partition.

Using AHC with a PXE booting

When using pxelinux, adding a simple entry in your pxelinux configuration is enough to make your server booting on AHC.

A typical configuration file looks like :

LABEL health
KERNEL vmlinuz-3.10.0-123.el7.x86_64
APPEND initrd=health.pxe SERV=192.168.1.1 IP=all:dhcp SESSION=install ONSUCCESS=halt ONFAILURE=reboot

Boot options

		Variable Name
		Role

		SERV
		IP address of the eDeploy server URL

		HTTP_PATH
		Path to access the upload.py (HTTP_PATH/upload.py)

		HTTP_PORT
		HTTP Port to contact the eDeploy server

		ONSUCCESS
		Action to take upon successful installation (kexec|reboot|halt|console)

		ONFAILURE
		Action to take upon failed installation (console|halt)

		UPLOAD_LOG
		Boolean. Upload log file on eDeploy server

		VERBOSE
		Boolean. Enable the verbose mode

		DEBUG
		Boolean. Enable debug mode (start a ssh_server for further access)

		IP
		A list of network device configuration (see below for details)

		SESSION
		Define a session name to name sub-directories when uploading results
into the HEALTHDIR directory (see below)

		DESTRUCTIVE_MODE
		Requires a write test to the local disks.
Be warned, that will DESTROY ANY DATA ON DISKS

Note: The IP= option is composed of a coma separated list of interfaces and
their configuration like <netdev>:<config>,<othernetdev>:<config>.
The netdev represent the network device from the linux point of view like eth0.
Two special values exists :
- other : to match all interfaces not listed in this list
- all : to match all interfaces

The configuration options are:
- none (no IP configuration at all)
- dhcp
- <CIDR address>

The address is under the CIDR notation like 192.168.0.1/24.
Some typical IP invocations could be:
- IP=eth0:dhcp,other=none
- IP=eth1:192.168.1.1/24,other:none
- IP=all:none

By default, all interfaces make DHCP requests like with ‘IP=all:dhcp’

Configuration of server side

If SERV variable is defined, the pointed host have to provide a cgi-bin script called upload-health.py. It requires the same /etc/edeploy.conf as per eDeploy and will use the following variables:

		Variable Name
		Role

		HEALTHDIR
		A directory where performance results are uploaded

Benchmark definition

In the standalone mode, the benchmark definition is static and works like the following :

CPU

Test consist of computing prime numbers in 10 seconds by using Sysbench.

		First, testing the cpu power of one core per socket

		Then, testing the cpu power of all cores

The overall cpu computing power compared with the raw power of a single core provides a good indicator of CPU’s scalability.

Memory bandwidth

Test consist of writing 0s with a given block size to compute the memory bandwidth in 5 seconds by using Sysbench.

		First, testing the memory bandwidth of a single core per socket

		Then, testing all the cores at the same time (once by forking the process, once by threading sysbench)

This procedure is repeated for the given list of block sizes : 1K, 4K, 1M, 16M, 128M, 1G, 2G

The overall cpu computing power compared with the raw power of a single core provides a good indicator of CPU’s scalability.

Storage

Test consist of accessing data on the block device in 10 seconds by using fio.

		First, testing each disk individually

		Then, testing all disks at the same time

The overall storage performance compared with disk’s tested alone provides a good indicator of controller’s ability to sustain a full load.

Tests are run for 10 seconds first in sequential mode with a 1MB block-size then with random mode with a 4K block-size.

By default, tests are not destructive and only perform read access. If write tests are expected, please use the DESTRUCTIVE_MODE setting.
Be warned, that using DESTRUCTIVE_MODE will really DESTROY ANY DATA on your disks.

Getting the results

Once the benchmark is completed, the resulting file is uploaded in the HEALTH_DIR/SESSION of your SERV server. The file is named with the product name and serial number of the associated server.

The output file is featuring the complete description of the host in addition of the performance results.

Analyzing the results

The cardiff tool is part of the eDeploy repository and manage to analyze a series of result files.

Selecting files to analyze

Cardiff is using a pattern matching to select files to analyze. The -p option is used to define the pattern. Note that pattern have to be protected by single quotes

cardiff -p 'results/test1/HP*.hw'

Grouping hosts

To avoid comparing apple and pears, it will first group identical servers. Performance will be analyzed on a group basis to insure coherency and consistency.

i.e similar servers with a different bios version will be put in two different groups. If user want to ignore such different it can use the -I option.
It is possible to ignore differences on multiple components by using a comma separated list. Available components are “cpu, hpa, disk, firmware, memory, network, system”

cardiff -p 'results/test1/HP*.hw' - I firmware
 or
cardiff -p 'results/test1/Dell*.hw' - I firmware,disk

By using the -o <directory> option, cardiff will save the differences between groups in the selected directory. This is an helper to easily understand the differences between groups.

Using the SUMMARY view (default)

Cardiff implements multiple views, the default one is called summary.

This view reports for every tested component a synthetic view to provide the following information :

		name of the test

		name of the tested device

		name of the view

		status of the subgroup {consistent|curious|unstable}

		average performance

		standard deviation

A typical output looks like :

cardiff.py -p 'results/test1/Dell*.hw'
[...]
Group 1 : Checking logical disks perf
standalone_read_1M_KBps sda: SUMMARY : 11 consistent hosts with 144869.45 IOps as average value and 882.93 standard deviation
standalone_randread_4k_IOps sda: SUMMARY : 11 consistent hosts with 661.73 IOps as average value and 4.29 standard deviation
standalone_read_1M_IOps sda: SUMMARY : 11 consistent hosts with 138.09 IOps as average value and 1.00 standard deviation
standalone_randread_4k_KBps sda: SUMMARY : 11 consistent hosts with 2660.82 IOps as average value and 17.36 standard deviation

If the standard deviation is lower than the expected value for such component, the group is said to be consistent
If the standard deviation is higher than the expected value for such component, the group is said to be unstable
If a few hosts are too far from the mean while the group is having an acceptable standard deviation, they are said as curious.

Using DETAIL view to analyze the raw performance

If some results have to be analyzed to understand how every single host performs, the DETAIL view have to be used.
Performance numbers are then printed in a row/column format where every column is a host, every row a test.

Typical usage of the DETAIL view to study the raw storage performance in random mode for hosts part of the group 1 :

cardiff.py -p 'results/test1/Dell*.hw' -l DETAIL -g '1' -c 'standalone_rand.*_4k_IOps' -i 'sd.*'
[...]
Group 1 : Checking logical disks perf
standalone_randread_4k_IOps : DETAIL : sd.*
 4Z8CQ3J 5ZXDQ3J 9Z8CQ3J 9Z8CQ3J 9ZBCQ3J CZBCQ3J FZTCQ3J GZTCQ3J HZ8CQ3J JZ9CQ3J JZXDQ3J
sda 656 665 653 667 662 663 657 662 665 666 663

Distributed benchmarking

Concept

Testing network performance requires cooperation from multiple hosts to gain a simultaneous load on the network interconnect.
Measuring the impact of the CPU load from virtual machines on hypervisors requires the same kind of cooperation.
The distributed mode of AHC (DAHC) can describe and orchestrate such benchmarks.

Building DAHC

Building AHC requires using eDeploy and select a particular Linux distribution like Debian|Ubuntu or Redhat|Centos.

A simple command is enough to build it like :

		for debian :

make health-img CMDLINE="console=ttyS0,115200" RBENCH=<ip_of_benchmark_server>

		for Redhat :

make health-img DVER=RH7.0 DIST=redhat ISO_PATH=<path_to_rhel-server-7.0-x86_64-dvd.iso> RHN_USERNAME='rhn_user@domain.com' RHN_PASSWORD='rhn_password' CMDLINE="console=ttyS0,115200" RBENCH=<ip_of_benchmark_server>

In addition of a standalone AHC, you can define the IP address of the host running the health-server.py script. If you intend to run DAHC in virtual machines, it could be useful to put the Linux console on the serial line to ease the log reporting at boot time.

This build process generates a bootable disk image like health-RH7.0-1.6.0.img but also a kernel and a ramfs named health.pxe. It is so possible to boot AHC by using an disk image or PXE.

Using DAHC with the disk image

The disk image is usually used with virtual machines. The default file format is RAW but could be easily converted in QCOW2 if required.

Using DAHC with a PXE booting

When using pxelinux, adding a simple entry in your pxelinux configuration is enough to make your server booting on AHC.

A typical configuration file looks like :

LABEL health
KERNEL vmlinuz-3.10.0-123.el7.x86_64
APPEND initrd=health.pxe SERV=192.168.1.1 IP=all:dhcp SESSION=install ONSUCCESS=halt ONFAILURE=reboot RBENCH=<ip_of_benchmark_server>

Boot options

The following options in addition on the standalone mode :

		Variable Name
		Role

		RBENCH
		IP of the server running health-server.py

Note: The RBENCH= option can be overloaded by using cloud-init. If the host is running under an hypervisor, the boot process will try to find a cloud-init configuration.
To consider the user-data as valid, it shall have the #EDEPLOYMAGIC keyword followed by a set of bash variables and their values.

A typical configuration looks like:

#EDEPLOYMAGIC
RBENCH=<ip_of_bench_server>

Configuration of server side

The server pointed by the RBENCH variable have to run the health-server.py script with the following options :

		Option Name
		Mandatory
		Role

		-f <yaml>
		Yes
		Selects the job description file as input

		-t <title>
		No
		Defines the title associated to this run.
By default, it’s the current date/time

Benchmark definition

In the distributed mode, the benchmark definition is performed on the server side by using a yaml file format.

Global settings

The first part of the yaml file defines the global settings like the following :

Common variables for jobs

When defining a job to be performed, the following variable could be defined:

		Variable Name
		Type
		Mandatory
		Default
		Role

		component
		String
		Yes
		
		Defines which component have to be tested {cpu|memory|storage|network}

		required-hosts
		Range
		Yes
		
		Defines number of hosts required for this test
A single integer or a range in the <min-max> format.
If range is used, this benchmark will be run multiple times

		step-hosts
		Integer
		No
		1
		Defines the step increment when required-hosts is a range.
It works like a modulo and insure than min and max of range are always included.
A range 1-7 with step-hosts = 2 will provide the following serie: 1,2,4,6,7

		affinity-hosts
		String
		No
		
		A coma-separated list of UUIDs where hosts are considered
When running VMs on top of Openstack, this option is useful to
select which hypervisors have to be used to search ‘hosts’
If not defined, all hosts are considered

		runtime
		Integer
		Yes
		10
		The default runtime for any benchmark job (in seconds)

Specific options for CPU jobs

		Variable Name
		Type
		Mandatory
		Default
		Role

		cores
		Integer
		No
		1
		Number of cores to test simultaneously

Specific options for Memory jobs

		Variable Name
		Type
		Mandatory
		Default
		Role

		cores
		Integer
		No
		1
		Number of cores to test simultaneously

		block-size
		String
		No
		128M
		Block size to test in the following format: <size>{K|M|G}

		mode
		String
		No
		forked
		Defines if tests are run in forked process or threads.
Possible values are : forked, threaded

Specific options for Storage jobs

		Variable Name
		Type
		Mandatory
		Default
		Role

		rampup-time
		Integer
		No
		5
		Defines the amount of time where performances are not measured
this is part of the runtime

		block-size
		String
		No
		4k
		Block size to test in the following format: <size>{k|m}

		access
		String
		No
		read
		Defines if reads or writes are performed to the disk
Possible values are : read, write

WRITE MODE DESTROY ANY DATA WITHOUT CONFIRMATION

		mode
		String
		No
		random
		Defines if random or sequential patterns are used
Possible values are : random, sequential

		device
		String
		No
		sda
		Defines which block device is tested
Any node name available in /dev/

Specific options for Network jobs

		Variable Name
		Type
		Mandatory
		Default
		Role

		arity
		Integer
		No
		2
		Size of a subgroup of VMs to be tested :
arity have to be modulo the step-hosts.
That implies that required-hosts have to start at 2
for the network tests

		network-hosts
		String
		No
		0.0.0.0/32
		A comma separated list of valid networks to test,
example: 192.168.1.0/24,10.0.0.0/8

		mode
		String
		No
		bandwidth
		Select bandwidth vs latency testing
Possible values are : bandwidth, latency

		connection
		String
		No
		tcp
		Selecting between tcp and udp streams
Possible values are : tcp, udp

		block-size
		String
		No
		16K
		Block size to test in the following format: <size>{k|m|K|M}.
{k|m} are {kilo|mega}bytes while {K|M} are in {kibi|mebi}bytes.
Only available for bandwidth tests

Sample job file

Please find below a typical job file.

name: sample_benchmark
required-hosts: 81
required-hypervisors: 3
jobs:
 my_mem_test:
 component: memory
 required-hosts: 1-81
 step-hosts: 6
 runtime: 10
 cores : 2
 block-size: 16M
 mode: forked
 my_cpu_test:
 component: cpu
 required-hosts: 1-81
 step-hosts: 6
 runtime: 10
 cores : 2
 my_read_seq_test:
 component: storage
 required-hosts: 1-81
 step-hosts: 6
 rampup-time: 5
 runtime: 60
 mode: sequential
 access : read
 block-size: 1M
 device : vda
 my_read_rand_test:
 component: storage
 required-hosts: 1-81
 step-hosts: 6
 rampup-time: 5
 runtime: 60
 mode: random
 access : read
 block-size: 4k
 device: vda
 my_net_bandwidth_test:
 component: network
 required-hosts: 3-81
 arity: 3
 step-hosts: 6
 runtime: 10
 network-hosts: 192.168.254.0/24,192.168.24.0/24,1.2.3.4/24
 mode: bandwidth
 connection: tcp
 my_net_latency_test:
 component: network
 required-hosts: 3-81
 arity: 3
 step-hosts: 6
 runtime: 10
 network-hosts: 192.168.254.0/24,192.168.24.0/24,1.2.3.4/24
 mode: latency
 connection: tcp
 my_udp_latency_test:
 component: network
 required-hosts: 2-20
 arity: 2
 step-hosts: 2
 runtime: 10
 network-hosts: 192.168.254.0/24,192.168.24.0/24,1.2.3.4/24
 mode: latency
 connection: udp
 affinity-hosts : 44454c4c-4b00-1039-8050-b9c04f573032, 44454c4c-4b00-1039-8058-c2c04f573032

Getting the results

At the end of the benchmark, results are stored in <HEALTHDIR>/dahc/<benchmark_name>/<title> directory.
This directory is made of a series of sub-directories representing every step-hosts value and a couple of file like the yaml used for this benchmark.

Every sub-directory owns directories named with the job name (like my_net_latency_test or my_udp_latency_test in the sample yaml file), i.e : /var/lib/edeploy/health/dahc/storage_load/2014_10_16-13h22/42/my_net_latency_test/

This is where results file are stored in addition of some metadata called metrics about the job duration, hosts information etc...

Analyzing the results

The cardiff tool is part of the eDeploy repository and manage to analyze a series of result files.

Selecting files to analyze

Cardiff uses the -r option to select a result directory. It wil analyze automatically the structure and metadata to perform sanity checks and computation.

cardiff -r '/var/lib/edeploy/health/dahc/sample_benchmark/2014_10_16-13h22/'

Reading the results

Cardiff will use gnuplot to render every single job into a series of graphics including performance and metadata metrics.
Every plot is rendered into a raw, smooth and trend versions.

The raw version plots the results as they are. It could be very noisy to read.

The smooth version plots the same results but with a csplines rendering. This kind of plotting hides peaks and provide an easier to read version of the raw data.

The trend version plots the same data series but with a bezier rendering. This view is clearly removing hills & falls to provide a global trend.

Every single output graphic will feature an automatically generated header providing the following information :

		Title

		Benchmark setup

		Hardware setup

		Software setup

Mean performance

This plot represent the mean performance of hosts that we used during a step inside the step-hosts value.
It is usually decreasing when the number of hosts is increasing as the finite performance of the platform have to divided by the number of hosts (VMs).

[image: _images/mean-raw.png]

Sum performance

This plot represent the sum of performance that hosts generated during a step inside the step-hosts value.
It is usually increasing when the number of hosts is increasing then stabilize before sometimes collapsing.

[image: _images/sum-raw.png]

Standard Deviation

The standard deviation measures the amount of variation or dispersion from the average.
A low standard deviation indicates that the data points tend to be very close to the mean (also called expected value); a high standard deviation indicates that the data points are spread out over a large range of values. (Source Wikipedia).

Lower is clearly better.

[image: _images/deviance-raw.png]

Jitter

Measure the time between the start event sent by the server and the ack message received to inform that benchmark started.

Lower is clearly better, usually a couple of milliseconds.

[image: _images/jitter-mean-raw.png]

Job duration

Plots the time taken by hosts to execute a particular job versus the expected time defined by the benchmark definition.

Closer to expected value is better.

[image: _images/job_duration-mean-raw.png]

Simultaneous plotting

When debugging or developing, it is useful to compare several benchmarks ran in different conditions.
To insure not comparing apple & pears, it is mandatory reusing the exact same benchmark definition.
If this condition is not matched, the simultaneous plotting will be refused.

		Define your benchmark job into a yaml file

		Run it by using the -t option of health-server to define the current condition like in health-server.py -f job.yaml -t mtu=1500

		Apply your tuning/changes on the platform

		Run the same benchmark again by using the -t option of health-server to define the current condition like in health-server.py -f job.yaml -t mtu=1600

		Compare the traces with cardiff -r ‘results/mtu1500/,mtu1600/’

Note that if you lost the yaml file, you can find a backup copy of it into the result directory of the first run (without_tuning in this example).

It is so possible to compare multiple traces by defining a coma-separated list of directories providing benchmark results ran in different conditions with the same benchmark definition.

In this simultaneous plotting, each data series will be plotted with associated title defined at runtime (mtu=1500 and mtu=1600 in this example). This is why having a well defined title is import for further reading.

The following image represent the simultaneous plotting of the job duration when comparing the mtu=1500 and mtu=1600 traces.

[image: _images/compared-job_duration-mean-raw.png]

 © Copyright 2014, eNovance.
 Created using Sphinx 1.3.1.

_images/find_the_8.jpg
share this if you could find
the number 8 within the minute

999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
99999999999999999989999999999999999999999
999
999
999
999
999
999
999
009999999999999999999099999999999999999999

search.html

 Navigation

 		
 index

 		eDeploy 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, eNovance.
 Created using Sphinx 1.3.1.

_images/job_duration-mean-raw.png
seconds (s)

105

Study of storage-read-rand bandwidth job_duration-mean from 1 to 81 hosts (step=6) : 2014_10_16-13h22

Benchmark setup : 1 random threads per host, blocksize=4k, mode=random, access=read, runtime=10 seconds, 3 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs

0S : Red Hat Enterprise Linux Server release 7.0 (Maipo) running kemel 3.10.0-123.¢17.x86_64, cpu_arch=x86_64

1045+

1035+

103+

10.25+

10.2

1015+

101

10.05+

T T
2014_10_16-13122
Expected value (10.00)

10

2

30

36

2
Number of Hosts

48

66

72

78

81

_images/mean-raw.png
KB/sec

Study of storage-read-rand bandwidth mean from 1to 81 hosts (step=6) : 2014_10_16-13n22

Benchmark setup : 1 random threads per host, blocksize=4k, mode=random, access=read, runtime=10 seconds, 3 hypervisors with fair scheduling
HW per virtualized host: 2 x Intel Xeon E312xx (Sandy Bridge) CPUs, 4096 MB of RAM, 1 disks : 128 GB total, 1 NICs
0S : Red Hat Enterprise Linux Server release 7.0 (Maipo) running kemel 3.10.0-123.¢17.x86_64, cpu_arch=x86_64

81

350000 : :
—+— 2014_10_16-13h22
300000
250000
200000
150000
100000
50000
0 I I I I I I
1 6 12 18 2 30 36 2 48 54 60 66 72 78
Number of Hosts

_images/image03.jpg
OS Image
server

Request available upgrades

Available upgrades

execute pre scripts

Updating Server Tree (Rsync)

executing post scripts

_images/spelling-test.png
Spelling Example

Can you read the sentence below?

It deosn't mtaetr in waht odrer
the letetrs in a wrod are. The
scentenc is stlil reedabal.

_images/image01.jpg
Server to

be
installed

Hardware detection

Sending hardware description
Searching role that

match the hardware
description

Sending role configuration
or
Message to tell no role avail.

_images/image04.jpg
Example of upgrades paths for Role “test”

