
eDeploy Documentation
Release 1.0

eNovance dev team

September 17, 2015

Contents

1 Linux systems provisionning and updating made easy 1
1.1 What eDeploy is made for ? . 3
1.2 Building Operating Systems (in detail) . 10
1.3 Deploy operating systems on an infrastructure . 15
1.4 Manage the Upgrade Process (In Detail) . 30
1.5 Developing on eDeploy . 34
1.6 APPENDIX . 36

i

ii

CHAPTER 1

Linux systems provisionning and updating made easy

1

eDeploy Documentation, Release 1.0

Table of Contents

• eDeploy User Guide
– Linux systems provisionning and updating made easy

* What eDeploy is made for ?
· Building Operating Systems
· Organizing Roles
· Role Versioning
· Deploying Roles
· Finding a role that match
· Installing the operating system
· The last action if installation is successful
· Manage the Upgrade Process

* Building Operating Systems (in detail)
· Installing eDeploy
· Building the role
· Choosing the role
· Choosing the Linux Distribution
· Defining the build version
· Choosing the default package repository
· Using Redhat Enterprise Linux
· Additional Repositories
· Redhat Network
· Building the role
· Output
· Full directory
· Compressed file
· How to create a new role ?
· Anatomy of a Role
· Creating the install file
· Creating the exclude file
· Makefile & Dependencies
· Basic API to add repositories or packages

* Deploy operating systems on an infrastructure
· Preparing the Infrastructure
· PXE based installation
· Network installation via USB booting
· Local installation via USB booting
· Defining eDeploy deployment tool’s configuration
· Preparing the eDeploy Server
· Dependencies
· Setting up the CGI bin
· Configuring eDeploy server
· The configuration file
· Downloading the Operating System
· Installing Operating Systems by using Rsync
· Installing Operating Systems by using HTTP
· Creating Hardware profiles and assign them to roles
· Spec file
· Corner cases when writing rules
· First rules shall be the most discriminative
· Not having the same criteria when searching for network interfaces
· Creating the configure script
· Best Practices
· Generating /post_rsync configuration
· Function helpers for configure scripts
· Using the Configuration Management Database (CMDB)
· Why using a CMDB ?
· Creating a CMDB file
· Defining ranges or lists
· The deflated version of the CMDB file
· Using $$variable
· Using CMDB values inside the configure script
· Setup the state file
· Boot the target server
· Debugging
· Enable SSH server on target server
· Centralize Logging (UPLOAD_LOG=1)
· Log file content
· Log file location
· Try match - Debugging match failures

* Manage the Upgrade Process (In Detail)
· What the upgrade process should do ?
· How to create an upgrade ?
· The upgrade file
· Run ./upgrade-from script
· Customize add_only / exclude / pre / post files
· add_only
· exclude
· pre
· post
· Run the upgrade on the client
· edeploy list - list available update
· edeploy test_upgrade VERSION - simulate the upgrade
· edeploy upgrade VERSION - perform the actual upgrade
· edeploy verify - verify the integrity of the current state
· Upgrade post-configuration policies
· Puppet
· Exclude during the upgrade generation
· Manage Downgrades
· File name syntax
· Downgrade script content

* Developing on eDeploy
· Git Organisation
· Ansible/
· Build/
· Config/
· Debian/
· Grapher/
· Metadata/
· Server/
· Src/
· Tests/
· Testing eDeploy
· Building the role & deployment tool
· Start the virtual machine
· Install the virtual machine
· Halt the virtual machine & power it up again
· Starting the tests

* APPENDIX
· APPENDIX A
· Hard drive
· System
· Firmware
· Network
· Cpu
· Per CPU
· Aggregation for all CPUs
· Memory
· Infiniband
· Per card
· Per port

2 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

1.1 What eDeploy is made for ?

While scalable configuration tools management systems (able to provision 1000+) emerged, yet the state of the art to
actually deploy that many OSes remains really basic.

Edeploy bridges this gap, allowing a user to deploy and maintain thousands of OSes.

Unique key features of eDeploy are :

• Hardware’s profile based detection to match roles

• Role based provisioning

• Scalable

To deploy and maintain servers in a cloud environment, 3 differents steps are required :

• Build Operating Systems and version them

• Deploy these operating systems on an infrastructure

• Manage the upgrade process

The following chapters will describe how eDeploy is managing these tasks and the associated concepts.

1.1.1 Building Operating Systems

Setting up a cloud infrastructure requires specializing servers in various roles (computing, storage, management, . . .).

The first concept in eDeploy is to offer an automatized way to build and version the underlying operating system
required for every role.

Organizing Roles

Each role in an infrastructure is sharing a common basis, usually the same Linux distribution, and then got specialized
by adding specific packages.

eDeploy is using the same approach to generate the Operating Systems for each role.

For a given Linux Distribution, like Redhat Entreprise Linux, Debian or Ubuntu, a minimalist environment is being
built : this is called the ‘base’. Base doesn’t aims at being used on a real system, it’s just an empty nutshell that will
be used afterward as a basis to create the roles users requires.

1.1. What eDeploy is made for ? 3

eDeploy Documentation, Release 1.0

4 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

This illustration shows how the Base role can be derived in final roles like a database server or a web proxy but also in
meta-roles than aims at providing a more specialize base for a group of roles.

The blue boxes represents the meta-role while the light orange ones are roles will be deployed on the infrastructure.

In this example, an ‘Openstack Common’ meta-role has been created to put in a common place all the commonalities
between all the final openstack roles (compute and storage).

Role Versioning

The building process of a role generates a tree or a compressed file composed with :

• the role name

• the Linux Distribution name

• a custom identifier

• a custom version

This unique naming insure at deployment time the exact content of the selected operating system. Each version of a
role defines the package set and theirs version.

Several versions of a single role can exists, like for adding new packages or fixing bugs. The upgrade path will be
explained in chapter ‘Manage the upgrade process’

1.1.2 Deploying Roles

Deploying an infrastructure like a Cloud means deploying various operating systems on many servers and adjusting
the configuration on a server basis.

As seen in the previous chapter, operating systems dedicated for each role required in the infrastructure are pre-built
and ready to be deployed.

It’s now time to determine which server shall receive which operating system and how many times a role should be
deployed.

Finding a role that match

To deploy a server, eDeploy detects its hardware configuration and compares it to a list of hardware profiles. If one
match and if this profile have to be deployed one time or more, the targeted server will be installed.

1.1. What eDeploy is made for ? 5

eDeploy Documentation, Release 1.0

Installing the operating system

If a spec file match the hardware description of the server to be deployed, it received the instructions to prepare itself
to receive the operating system. This instructions features :

• disk’s partitioning

• file system formatting

• final networking configuration

• any other low-level configuration (serial line, IPMI, ..)

eDeploy shall only consider to perform the low-level configuration needed to boot the system like having properly
formated file systems and system reachable from the network (IPv4/IPv6/ssh).

All services configuration like http, openstack services, SQL database setup and other shall be done by any other
external tool like puppet or chef. eDeploy only aims at providing a bootable operating system with all the required

6 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

packages installed and the low-level setup done.

Once the configuration of the server is done, eDeploy will extract on its local disk an operating system, defined by the
matching role, downloaded from an image server by using RSYNC or HTTP connexion.

After the Operating System extraction, a post configuration is performed to insure a proper network, hostname, etc..
configuration. The bootloader is then installed.

The installation process is finished, system is ready to be used.

The last action if installation is successful

Once the installation is done, the user will be able to choose many different scenario :

• reboot the server

• power the server down

• start system with kexec without any reboot

1.1. What eDeploy is made for ? 7

eDeploy Documentation, Release 1.0

• get a console for debug purposes

1.1.3 Manage the Upgrade Process

Once a server got installed with eDeploy and rebooted, it will be needed at some time to update it. To achieve this
update, it is not required to get back to the deployment phase as presented before.

An eDeploy client tool got added during the post configuration phase of the initial deployment. This tool can be used
to upgrade the system from a version to another of the same role.

Upgrade paths are defined on the image server and defines files to updates and actions to performs before and after the
installation.

The upgrade process will stop the impacted services, perform the file installation and restart the services.

8 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

1.1. What eDeploy is made for ? 9

eDeploy Documentation, Release 1.0

Upgrade paths for a given role are defined by the eDeploy administrator. It will detail operations to performs between
two versions. Some upgrade paths can be defined toward a smaller revision if no data coherency or conversion are
involved.

1.2 Building Operating Systems (in detail)

1.2.1 Installing eDeploy

First, git clone the eDeploy repository with this url : https://github.com/enovance/edeploy.git

Then check your host have the following prerequisites :

• python-openstack.nose-plugin

• python-mock

• python-netaddr

• debootstrap

• qemu-kvm

• qemu-utils

• libfrontier-rpc-perl

• yum

Some optional packages could be installed also :

• pigz

Regarding the Linux distribution you use, the package names could be a little different from that list.

1.2.2 Building the role

Choosing the role

Firstable, you need to select a role you want to build. The available roles are listed in the build/ directory with the
.install extension. In this example, we’ll build openstack-compute role.

Choosing the Linux Distribution

Then, choose a Linux Distribution in the following list and get a DIST parameter that will be appended on the com-
mand line. In our example, we’ll choose Debian Wheezy.

The following list provides the DIST value for all supported Linux distribution :

• Redhat 6.5 : DIST=redhat

• Centos 6.4 : DIST=centos

• Debian Wheezy : DIST=wheezy|squeeze|jessie

• Ubuntu Precise (12.04) : DIST=precise|lucid|quantal|raring|saucy|trusty

10 Chapter 1. Linux systems provisionning and updating made easy

https://github.com/enovance/edeploy.git

eDeploy Documentation, Release 1.0

Defining the build version

At the end, we choose a version. A version is a unique identifier that will represent this couple (role+Linux Distribu-
tion) at the time you did the build. The version string will be put inside the VERSION variable.

In this example, we choose H-1.0.0 standing for ‘Havana , build version 1.0.0’. We add VERSION=’H-1.0.0’ on the
command line.

Choosing the default package repository

Linux distributions are made of packages stored into packages repositories. To build a role, the ‘base’ role needs to
know where the packages shall be taken from.

Each Linux distribution owns its particular packages repositories, eDeploy’s administrator may override the default
setting by using the REPOSITORY variable.

For example, to use a local proxy to gain access to the Debian packages, you could setup : ‘REPOSI-
TORY=http://10.68.0.2:3142/ftp.fr.debian.org/debian’

Using Redhat Enterprise Linux

When using a Redhat Linux Enterprise distribution, you’ll need some specific configuration.

RHEL provides its distribution in an ISO format like : ‘rhel-server-6.5-x86_64-dvd.iso’

The REPOSITORY variable shall point an HTTP server that share the content of the iso.

If you prefer using directly the iso file locally, you have to define the ISO_PATH variable instead of using REPOSI-
TORY like ‘ISO_PATH=/mnt/share/rhel-server-6.5-x86_64-dvd.iso’.

Additional Repositories

To build more complex roles like openstack, it is required to add additional repositories. eDeploy uses the EPEL and
RDO repositories for both Centos and Redhat.

Redhat Network

To gain all required dependencies and latest updates, Redhat Enterprise Linux users have to provide credential to login
on the Redhat Network portal. RHN_USERNAME and RHN_PASSWORD shall be used to provides respectively
RHN username and password like in :

RHN_USERNAME=”myemail@mycompany.com” RHN_PASSWORD=’mypassword”

Note: The Redhat Network configuration used during the build process is removed once done. This is mandatory to
avoid leacking your credentials.

Building the role

To launch the build, enter the build/ directory and use the make command with all the required variables as shown in
the previous sub-chapters.

In our example, we have :

make DIST=wheezy DVER=D7 VERSION='H-1.0.0' openstack-compute

1.2. Building Operating Systems (in detail) 11

mailto:erwan.velu@enovance.com

eDeploy Documentation, Release 1.0

As mentioned above, to create a role there are 3 required variables :

• DIST : The name of the base distribution

• DVER : The distribution version like Debian 7 => D7 or CentOS 6.5 => C65

• VERSION : The version of the profile

To add another example if we had to build the openstack-compute role for Redhat we use :

make DIST=redhat VERSION='H-1.0.0'
ISO_PATH=/mnt/share//rhel-server-6.5-x86_64-dvd.iso
RHN_USERNAME="myuser@mycompany.com" RHN_PASSWORD="mypassword"
openstack-compute

As shown in the first chapter, the openstack-compute role build two other roles. First, it builds the base role if not
already built and then the openstack-common one. Theses builds’ dependencies are required before building the
openstack-compute role.

1.2.3 Output

When a role got built successfully, the result is available in two different way while representing the same content.

By default, unless the TOP variable is overridden at make time, the /var/lib/debootstrap/install/<RELEASE>-
<VERSION> directory features the following :

• a full directory

• a compressed file

Full directory

A directory is created for each role containing the full tree of the operating system except the virtual filesys-
tems like /proc, /dev, /sys. For our example, the path of our openstack-compute role for wheezy is :
/var/lib/debootstrap/install/D7-H-1.0.0/openstack-compute/

This directory could be used by the rsync initial deployment but is mandatory when managing updates.

Compressed file

The compressed file are name like <ROLE>-<RELEASE>-<VERSION>.edeploy like openstack-compute-D7-
H.1.0.0.edeploy. Its MD5 checksum is stored into the same filename with a ‘.md5’ extension like openstack-
compute-D7-H.1.0.0.edeploy.md5.

This file is a gzipped version of the full directory and could be used for

• HTTP deployments

• Archiving purpose

1.2.4 How to create a new role ?

Anatomy of a Role

A role is made of two files, the install file and the exclude file, both located in the $BUILDDIR directory.

More often the role to create is based on another role like base or a more specialized role like openstack-common.
The following description of the install file is focused on mysql role as base role is already provided by eDeploy.

12 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

Note: eDeploy provides a sample role called ‘sample’ that could be use as a basis to create any new role. It provides
all the best pratice to get a good starting point and a clean role.

Creating the install file

The install script is in charge of creating the appropriate OS tree. The user have the total freedom of customizing the
new OS tree based on its needs, by doing all sort of differents tasks:

• Add/Remove new repository

• Add/Remove new packages

• Change configuration file

• And much more

eDeploy provides an API for packages and repositories management. It will be explained on a further chapter.

Find below an example of a possible mysql.install file

src="$1"
dir="$2"
ROLE=mysql
ORIG=$(cd $(dirname $0); pwd)
PACKAGES="mysql-server"
. ${ORIG}/functions
update_repositories $dir
install_ib_if_needed $ORIG $dir
case "$(package_tool)" in

"apt")
trick to allow to test and demo updates: remove the update

source for this role
rm -f ${dir}/etc/apt/sources.list.d/updates.list
do_chroot ${dir} debconf-set-selections <<<

'mysql-server-5.1 mysql-server/root_password password your_password'
do_chroot ${dir} debconf-set-selections <<<

'mysql-server-5.1 mysql-server/root_password_again password
your_password'

install_packages $dir "$PACKAGES"
;;

"yum")
install_packages $dir "$PACKAGES"
do_chroot ${dir} chkconfig --level 2345 mysqld on
;;

*)
fatal_error "$package_tool isn't supported for $ROLE role"
;;

esac
clear_packages_cache $dir

An install script called the following way :

myrole.install orig dest version

Where myrole.install represents your .install script, orig represents the role you are basing the new role on, dest rep-
resents the path the generated OS tree will be located. The version parameters is only necessary for the base role.

To build the MySQL role, the command looks like :

1.2. Building Operating Systems (in detail) 13

eDeploy Documentation, Release 1.0

mysql.install base mysql 1.0.0

Note: an install script will never be called directly but via a make target (more details are provided in the following
‘Makefile & Dependencies’ sub-chapter.)

Creating the exclude file

The final purpose of the exclude file is to be passed to an rsync command via the ‘–exclude-from’ parameter.

--exclude-from=FILE
This option is related to the --exclude option, but

it specifies a FILE that contains exclude patterns (one per line).
Blank lines in the file and lines starting with ';' or '#' are
ignored.

Functionally, it rsync all the files from the new OS tree, mindness the specified files in the exclude file.

Makefile & Dependencies

To make it easier to build roles, eDeploy provides a central Makefile ($BUILDDIR/Makefile) to build the roles. Each
role as a corresponding set of entry in the Makefile. In this example we focus on the mysql role.

To create the role target in the Makefile, here the mysql target as follow :

mysql: $(INST)/mysql.done

Then create the matching target. This is where you actually run the install script (ie. mysql.install) and specify on
which role and version it is based. (ie. $(INST)/base and $(VERS)). Once the role got built, a mysql.done file is
created that means the job has been done.

$(INST)/mysql.done: mysql.install $(INST)/base.done
./mysql.install $(INST)/base $(INST)/mysql $(VERS)
touch $(INST)/mysql.done

To ease the role creation, a sample target named ‘sample’ is included in the makefile. A simple copy/paste is a good
starting point.

Find below various examples of build target :

openstack-compute role based on openstack-common

openstack-compute: $(INST)/openstack-compute.done
$(INST)/openstack-compute.done: openstack-compute.install
$(INST)/openstack-common.done

./openstack-compute.install
$(INST)/openstack-common $(INST)/openstack-compute $(VERS)

touch $(INST)/openstack-compute.done

devstack role based on cloud

devstack: $(INST)/devstack.done
$(INST)/devstack.done: devstack.install $(INST)/cloud.done

./devstack.install $(INST)/cloud $(INST)/devstack $(DIST)$(VERS)
touch $(INST)/devstack.done

cloud role based on base

14 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

cloud: $(INST)/cloud.done
$(INST)/cloud.done: cloud.install $(INST)/base.done

./cloud.install $(INST)/base $(INST)/cloud $(VERS)
touch $(INST)/cloud.done

Basic API to add repositories or packages

In the following table one can find the different functions eDeploy provides to help deal with packages and repositories.

Please note :

• $dir is the chroot environment

• $DIST is the Linux distribution name

• pkg{n} is the package name

API function name Actions Syntax
install_packages install listed packages install_packages $dir pkg1 pkg2
remove_packages remove listed packages remove_packages $dir pkg1 pkg2
update_repositories update package repositories update_repositories $dir
update_system update the existing packages update_system $dir
upgrade_system upgrading packages to new versions or release upgrade_system $dir
clear_package_cache clear package cache clear_package_cache $dir
is_package_installed check if package installed is_package_installed $dir pkg
add_epel_repository enable EPEL repository add_epel_repository $dir
add_rhn_repostitory register to Redhat Network add_rhn_repository $DIST $dir
unregister_rhn unregister from Redhat Network unregister_rhn $DIST $dir
rebuild_db_with_local rebuild rpm database by using rpm from the system rebuild_db_with_local $dir
rebuild_db rebuild rpm database by using rpm from the chroot rebuild_db $dir

1.3 Deploy operating systems on an infrastructure

As seen in the first chapter, eDeploy can be used to create roles and build them in a constant way. It’s now time to
deploy those roles on the physical infrastructure.

eDeploy’s concept is to describe what hardware properties shall be associated to a given role. In a cloud infrastructure,
servers are usually built to match a particular functional role :

• storage nodes have many disks

• compute node have stronger CPU and more memory

• etc..

This chapter is about preparing the server to be installed, describe them and assign to a role and finally perform the
deployment.

1.3.1 Preparing the Infrastructure

This subchapter describe the requirements to get your environment being able to perform a deployment.

It is highly recommended using PXE booting to ease the process. Therefore an USB booting scenario exists but could
be difficult to scale.

1.3. Deploy operating systems on an infrastructure 15

eDeploy Documentation, Release 1.0

PXE based installation

Installing servers by using PXE ease the process of getting the initial Linux Kernel and its RAMFS. To get a PXE
working in an infrastructure you need :

• a DHCP server to get an automatic network addressing used during the deployment only

• it shall also answer PXE requests

• a TFTP server for regular PXE booting or a HTTP/FTP server for an iPXE|gPXE booting

• This server shall provides a bootstrap, usually pxelinux from the Syslinux project

• Target servers configured to do PXE booting as first boot device

• This is a bios setup to enable the option ROM and a specific boot order configuration

If we consider a traditional PXE booting, a server shall host the tftp server and the bootstrap.

We suggest you to use dnsmasq which is a neat DNS/PXE/TFTP/DHCP server.

On Debian based systems : apt-get install dnsmasq syslinux-common

On RHEL based systems : yum install dnsmasq syslinux-tftpboot. You may need to enable a optionnal channel like
rhel-x86_64-server-optional-6.5.z to get access to this package.

Your /etc/dnsmasq.conf should look like this example:

interface=eth0
no-negcache
no-resolv
read-ethers

cache-size = 4096
log-async = 25

domain=example.com,10.193.108.0/24

dhcp-range=10.193.108.224,10.193.108.239

Default gateway
dhcp-option=3,"10.193.108.1"
dhcp-option=66,"10.193.108.1"

dhcp-lease-max=1000
#dhcp-authoritative
dhcp-boot=pxelinux.0
dhcp-boot=net:normalarch,pxelinux.0
dhcp-boot=net:ia64,$elilo
enable-tftp
tftp-root=/tftpboot

dhcp-host=00:50:56:89:9C:8D,compute-01,10.193.108.227
dhcp-host=00:50:56:89:3B:E9,compute-02,10.193.108.228

Make sure you create the file $TFTPBOOT_ROOT/pxelinux.cfg/default

Also make sure you copy pxelinux.0 to $TFTPBOOT_ROOT/

An example of what the pxelinux.cfg/default file might look like

prompt 0
timeout 0

16 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

default eDeploy
serial 0

LABEL eDeploy
KERNEL vmlinuz
INITRD initrd.pxe
APPEND SERV=192.168.122.45 HSERV=192.168.122.45 ONFAILURE=console ONSUCESS=kexec VERBOSE=1 UPLOAD_LOG=1 HTTP_PATH=/

The pxelinux configuration could be more precise to match a particular host or using some network filtering to define
profiles. Please refer to Syslinux documentation if you need such setup.

To generate the required kernel and initrd, the pxe role of eDeploy have to be built.

Please refer to ‘Defining the boot configuration’ subchapter to get details on how to configure the eDeploy deployment
tool.

Network installation via USB booting

If no PXE boot is available on the infrastructure, it is possible to use an USB based solution to start the eDeploy
deployment tool on the server to be installed.

Note: This solution is not scalable and could be difficult to setup. The number of USB keys and the induced latency
to power on all the servers in the proper configuration could be very problematic.

To get an USB bootable setup, you need :

• a target server where USB booting is enabled

• USB bootable device shall be the default boot option (in boot order bios menu)

• the bootable image shall be built with static parameters

• All the configuration about server’s ip and some other (please refer to ‘Defining the boot configuration’ for
complete description) shall be defined at build time while PXE booting can do it dynamically

• If a DHCP server exists you can get an automatic network address used during the deployment only

• If no DHCP server exists, use the IP= command to put a static address to one of your interface to contact the
edeploy server like : IP=eth0:192.168.1.254/24,other:none

• It’s also possible to ask to bind an interface to a specific vlan adding the ‘@’ character followed by the VLAN
id: IP=eth0:192.168.1.254/24@101,other:none

The USB bootstrap is built by using the ‘img’ role available in eDeploy. All required parameters shall be provided
during the built process. A bootable image is generated and shall be installed on a USB key by using the ‘dd’ command.

make img DIST='wheezy' SERV=192.168.1.1
...
Raw disk image is available here: initrd.pxe-D7-F.1.0.0.img
dd if=initrd.pxe-D7-F.1.0.0.img of=/dev/<your_usb_key> bs=1M

Local installation via USB booting

If no PXE boot is available on the infrastructure, it is possible to use an USB based solution to start the eDeploy
deployment tool on the server to be installed.

Note: This solution is not scalable and could be difficult to setup. If multiple hosts shall be deploied, a single USB key
shall be used generating a sequential deploiement (1 server at a time).

To get an USB bootable setup, you need :

1.3. Deploy operating systems on an infrastructure 17

mailto:192.168.1.254/24@101

eDeploy Documentation, Release 1.0

• a target server where USB booting is enabled

• USB bootable device shall be the default boot option (in boot order bios menu)

• the bootable image shall be built with static parameters

• a role to deploy already built

• an hardware description (specs/configure/logs) that match the hardware

The USB bootstrap is built by using the ‘img’ role available in eDeploy. All required parameters shall be provided
during the built process. A bootable image is generated and shall be installed on a USB key by using the ‘dd’ command.

This solution works like the following: - building an img image with EMBEDDED_OS & EMBEDDED_ROLE
variable - boot this image on the host to deploy - the hw matching is done localy - the target OS is deployed from the
USB key to the host machine

EMBEDDED_OS variable shall point to an existing .edeploy file. This OS will be included inside the USB bootable
image. The name of the resulting image will contain the role name.

EMBEDDED_ROLE variable shall point to the hardware description without any .cmdb/.spec/.configure extension.
The three configuration file (.cmd/.spec/.configure) are copied on the USB device.

At boot time, the upload.py is executed from the USB device instead of the edeploy server and uses the cmdb, configure
& spec file from the USB stick. So this deploiement method doesn’t require any network configuration/service.

Those files will remain on a writable partition of the USB stick making it consistent over time. That way, if you
provide a CMDB with several host to deploy, the same key can be used several time to deploy the remaining hosts.

make img DIST='wheezy' EMBEDDED_OS=/var/lib/debootstrap/install/D7-H.1.1.0/deploy-D7-H.1.1.0.edeploy EMBEDDED_ROLE=/home/erwan/Devel/edeploy/config/kvm-usb
...
Raw disk image is available here: initrd.pxe-D7-H.1.1.0-with-deploy-D7-H.1.1.0.img
dd if=initrd.pxe-D7-H.1.1.0-with-deploy-D7-H.1.1.0.img of=/dev/<your_usb_key> bs=1M

Defining eDeploy deployment tool’s configuration

Defining the configuration of the deployment tool could be done at build time for the USB mode or at boot time for
the PXE based deployment.

In both scenario, options remains the same and the following list is exhaustive :

Variable Name Role Default value
SERV IP address of the eDeploy server URL 10.0.0.1
HTTP_PATH Path to access the upload.py (HTTP_PATH/upload.py) /cgi-bin/
HTTP_PORT HTTP Port to contact the eDeploy server 80
HSERV IP address of the HTTP server for Compressed File transfer None
HSERV_PORT Port to contact the HTTP server for Compressed File transfer 80
HPATH Path on the HTTP server for Compressed File transfer install
RSERV IP address of the RSYNC server for Full Directory file transfer None
RSERV_PORT Port to contact the RSYNC server for Full Directory file transfer 873
RPATH Path on the RSYNC server for Full Directory file transfer install
ONSUCCESS Action to take upon successful installation (kexec|reboot|halt|console) reboot
ONFAILURE Action to take upon failed installation (console|halt) halt
KEXEC_KERNEL The version of the expect kernel to be booted with kexec None
UPLOAD_LOG Boolean. Upload log file on eDeploy server 1 (enabled)
VERBOSE Boolean. Enable the verbose mode 0 (disabled)
DEBUG Boolean. Enable debug mode (start a ssh_server for further access) 0 (disabled)
IP A list of network device configuration (see below for details) all:dhcp
LINK_UP_TIMEOUT Timeout to consider a network link detection completed 10 (seconds)

18 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

Note : The kexec option of ONSUCCESS means that after a successful deployment of the operating system, eDeploy
extract both kernel and initrd of the freshly installed system and boot it immediately without any power cycle thanks
to the kexec technology. This option improve greatly system’s availability by avoiding a potentially long rebooting
process thanks to option BIOS ROMs (PXE, SATA & RAID controllers). When the deployed operating system features
several kernel versions, edeploy will by default select the first kernel available. If user wants to enforce a particular
version, the KEXEC_KERNEL can be used. KEXEC_KERNEL arguments expect a kernel version taken from the
filename. This kernel version shall be unique in the /boot/ directory. KEXEC_KERNEL=3.2.0-4 will boot vmlinuz &
initrd that hold 3.2.0-4 in its name.

Note: The IP= option is composed of a coma separated list of interfaces and their configuration like <net-
dev>:<config>,<othernetdev>:<config>. The netdev represent the network device from the linux point of view like
eth0. Two special values exists : - other : to match all interfaces not listed in this list - all : to match all interfaces

The config options are: - none (no IP configurtion at all) - dhcp - <CIDR address>

The address is under the CIDR notation like 192.168.0.1/24. Some typical IP invocations could be: -
IP=eth0:dhcp,other=none - IP=eth1:192.168.1.1/24,other:none - IP=all:none

By default, all intefaces make DHCP requests with ‘IP=all:dhcp’

Note: All this options can be overloaded by using cloud-init. If the host is running under an hypervisor, the boot
process will try to find a cloud-init server. To consider the user-data as valid for eDeploy, it shall have the #EDE-
PLOYMAGIC keyword followed by a set of bash variables and their values.

A typical configuration looks like:

#EDEPLOYMAGIC
KEXEC_KERNEL=3.10.0-123.el7

Note: Kernel arguments surrounded by pipes will be propagated on the installed hosts bootloader’s configuration. A
typical use case is to override the default linux console to use the serial lines like in the following example :

APPEND initrd=initrd.pxe [...] | console=tty0 console=ttyS0,115200n8 |

1.3.2 Preparing the eDeploy Server

The eDeploy server is only a simple CGI python script that :

• receive the hardware profiles from servers to install

• try to match them with hardware specifications (.spec files)

• check if the associated role of an hardware specification have to be provisioned

• if so,

• decrement the number of system to be provisioned on this role (state file)

• compute a set of key/value settings (CMDB)

• send the configuration script to the server to installed

• if not

• inform the server to be installed that no roles are available for it

Dependencies

This simple CGI script have a two dependencies :

• python >= 2.6

1.3. Deploy operating systems on an infrastructure 19

eDeploy Documentation, Release 1.0

• python-ipaddr

Setting up the CGI bin

The hardware/profile matching is done by calling upload.py python script on the eDeploy server. For this script to be
executed the server needs to allow the execution of CGI scripts.

The location of the upload.py script is defined by the HTTP_PATH variable, the url of the server is defined by
SERV variable and the port are specified by HTTP_PORT variable.

To sum it up, the upload.py script need to be available at : http://SERV:HTTP_PORT/HTTP_PATH/upload.py

To validate its proper installation, connecting any web client to it, like wget, shall return the following error message :
‘No file passed to the CGI’

Note: SERV, HTTP_PORT, HTTP_PATH variables are specified as parameters at boot time.

Configuring eDeploy server

The configuration file The main eDeploy configuration file is located at /etc/edeploy.conf. It is, at the moment, not
possible to have it anywhere else on the system. This might evolve in future releases.

An example of /etc/edeploy.conf

[SERVER]
HEALTHDIR = /var/lib/edeploy/health/
CONFIGDIR = /var/lib/edeploy/config/
LOGDIR = /var/lib/edeploy/config/logs
HWDIR = /var/lib/edeploy/hw/
LOCKFILE = /var/run/httpd/edeploy.lock
USEPXEMNGR = True
PXEMNGRURL = http://192.168.122.1:8000/
METADATAURL = http://192.168.122.1/

You can have multiple sections representing different deployments. The <section> name is found according to the
SECTION=<section> kernel boot argument instead of the default SERVER section when no argument is specified.

The following table provide the list of settings and their usage for each section. To insure a proper installation, the
directory owner is mentioned.

Setting name Usage Directory Owner
HEALTHDIR Path where the Automatic Health Check role will put its results http service
CONFIGDIR Path where all the available roles are located (state file included) http service
LOGDIR Path where the log file are stored http service
HWDIR Path where the received hardware profiles are stored http service
LOCKFILE Lock used to insure coherency during processing http service
USEPXEMNGR Define if PXE Manager shall be used (True or False) N/A
PXEMNGRURL URL that serves the PXE Manager service N/A
METADATAURL URL that serves the cloud-init configuration (leave empty if none) N/A

Downloading the Operating System

During the first installation, the eDeploy client query the eDeploy server for the OS tree files (Full directory or Com-
pressed files). The administrator needs to provide a way to make those data available on the network. eDeploy supports
two differents protocols. eDeploy administrator shall define which one to be used:

20 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

• Rsync: provides Full directory files

• Location is specified by RSERV and RSERV_PORT variables

• HTTP: provides compressed .edeploy files.

• Location is specified by HSERV and HSERV_PORT variables

HSERV, HSERV_PORT, RSERV, RSERV_PORT variables are specified as parameters at boot time.

If RSERV variable is not specified it is equal to SERV value. The init script search for HSERV and then for RSERV.

Note: Further upgrades are exclusively done by using Rsync protocole.

Installing Operating Systems by using Rsync The Rsync server is optional, but is an alternative to HTTP transfer.
The rsync server shall be enabled on the server pointed by RSERV value.

On Debian based systems: apt-get install rsync

On RHEL based systems : yum install rsync

The rsync server shall export two directories :

• the installation directory ($INST)

• the metadata directory

The installation directory is used to download operating systems trees while the metadata is used to determine which
upgrades are available for a given role on a given version.

Here a sample configuration file of the rsync server configuration file :

uid = root
gid = root
[install]

path = /var/lib/debootstrap/install
comment = eDeploy install trees

[metadata]
path = /var/lib/debootstrap/metadata
comment = eDeploy metadata

Installing Operating Systems by using HTTP The HTTP server is optional, but is an alternative to Rsync transfer.
It shall be enabled on the server pointed by HSERV value.

On Debian based systems: apt-get install apache2

On RHEL based systems : yum install httpd

It is mandatory that /var/lib/debootstrap/install directory is available over an HTTP access so eDeploy client can
retrieve the images. Operating system images shall be available via http://HSERV:HPORT/install url.

Creating Hardware profiles and assign them to roles

An hardware profile is composed of three files :

• specs file: description of the hardware to match

• configure script: in charge of configuring the server before the OS installation

• cmdb file : define a set of host’s based key/value settings used during {post}configuration

1.3. Deploy operating systems on an infrastructure 21

http://HSERV:HPORT/install

eDeploy Documentation, Release 1.0

Spec file

Specs file are describing hardware profiles. They describe - in its own DSL - the requirements a hardware needs to
meet to be tied to a specific role. Specs file works in an all or nothing fashion. To be tied to a specific profile, the
server to be provisioned hardware profile must match all the rules written in this file. The default ‘vm-debian.spec’
file looks like this :

[
('disk', '$disk', 'size', 'and(gt(4), lt(12))'),
('network', '$eth', 'ipv4', 'network(192.168.122.0/24)'),
('network', '$eth', 'serial', '$mac=not(regexp(^28:d2:))'),

]

To match the ‘vm-debian’ profile, a hardware system must match the following criterias :

• have a hard drive bigger than 4GB and smaller than 12GB

• have one network interface on the 192.168.122.0/24 IPV4 network

• have a MAC address not starting by 28:d2:

The more discriminant criterias are, the more accurate the matching is. For example, the most discriminant criteria is
the serial number of a server as it is supposed to be unique and the least discriminant is the processor family as its very
common. An inefficient specs file could lead to servers being provisioned with a profile they should not be provisioned
with.

To make this description file more flexible, eDeploy provides a set of helper functions.

• network() : the network interface shall be in the specified network

• gt(), ge(), lt(), le() : greater than (or equal), lower than (or equal)

• in() : the item to match shall be in a specified set

• regexp() : match a regular expression

• or(), and(), not(): boolean functions. or() and and() take 2 parameters and not() one parameter.

This is a list of typical usage of helpers :

('network', '$nic0', 'serial', 'in("52:54:00:d6:85:55", "52:54:00:a5:d3:93", "52:54:00:6e:93:b9"')

('network', '$nic0', 'serial', '$$mac-nic0=in("52:54:00:d6:85:55", "52:54:00:a5:d3:93", "52:54:00:6e:93:b9"')

('network', '$nic0', 'serial', '$mac-nic0=not(regexp(^28:d2:))')

('network', '$nic0', 'ipv4', 'network(192.168.1.0/24)')

('disk', '$bootdisk', 'size', 'and(gt(20), lt(50)))'

('disk', '$bootdisk', 'size', '$size=le(20)')

('disk', '$disk', 'size', 'in(10, 20, 30)')

eDeploy also provides a place holder feature. In order to be reused during the configuration process, one can use the
values sent by the hardware profile detection report, using the $var syntax in the specs file. For example with the
following sample

('network', '$eth', 'serial', '$mac'),

On the configure script of this profile, the administrator can use the ‘$mac’ variable that match the mac address and
the “$eth’ variable that match the interface with the values sent by the to be provisioned server.

22 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

Corner cases when writing rules

Writing rules means trying to detect some specifics hardware components. Some of them requires several rules to
insure matching the proper device.

The network devices are one of those as we need to detect :

• a mac address

• an ipv4 address

• a link status

• a port speed

• a port setup (auto negotiation, . . .)

First rules shall be the most discriminative As the rules are taken one line after the other, it’s important to insure
the matching device from the first rule is the good one. It means the first rules shall be as much discriminative as
possible.

('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'link', 'yes'),
('network', '$eth-pub2', 'ipv4', 'network(172.17.0.0/16)'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),

The previous example is done the wrong way as the first rule is not enough discriminative.

If we consider a physical host with the following configuration :

• eth0 with a network link establish and an ipv4 address set to 172.17.1.1

• eth1 with a network link establish and an ipv4 address set to 10.66.6.1

When eDeploy try to find which interface is ‘eth-pub1’, it will try to find the first interface that have a link enabled. In
this configuration, eth0 match the first rule and so ‘eth-pub1’ is set to eth0.

When the second rule is parsed, it check if ‘eth-pub1’ (eth0) is part of the 10.66.6.0/24 network. This test fails since
eth0 is part of the 172.17.0.0/16 network, the hardware matching is reported as failed as eDeploy doesn’t try to find
another interface if the a rule fails.

To insure this rule to be working properly, the highly discriminative parameter shall be set first. In this example,
the ipv4 network address shall be put in first place. This way, ‘eth-pub1’ is assigned to eth1 at the first rule and the
following match too. The hardware specification file does match.

The correct spec file should have been written this way :

('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'ipv4', 'network(172.17.0.0/16)'),
('network', '$eth-pub2', 'link', 'yes'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),

Not having the same criteria when searching for network interfaces When searching for criteria on some network
interfaces it’s important to use the same criteria on all the rules.

1.3. Deploy operating systems on an infrastructure 23

eDeploy Documentation, Release 1.0

('network', '$eth-pub1', 'ipv4', 'network(10.66.6.0/24)'),
('network', '$eth-pub1', 'link', 'yes'),
('network', '$eth-pub1', 'serial', '$mac-pub1'),
('network', '$eth-pub2', 'vendor', 'Broadcom Corporation'),
('network', '$eth-pub2', 'serial', '$mac-pub2'),
('network', '$eth-io1', 'vendor', 'Broadcom Corporation'),
('network', '$eth-io1', 'serial', '$mac-pub2'),
('network', '$eth-io1', 'link', 'yes'),

The previous rules set is incorrect and could lead to improper interface matching and a non-matching profile while the
hardware setup is correct.

Important : eDeploy doesn’t know about ordering. That means it doesn’t test all interfaces like eth0, eth1, eth<n>.
The order in which the hardware is tested isn’t defined. The same apply for non NIC hardware.

Let’s consider the host that have the following setup:

• eth0 with a network link establish and an ipv4 address set to 10.66.6.1

• eth1 with a Broadcom network interface with a link enabled

• eth2 with a Broadcom network interface with a link disabled

‘eth-pub1’ is associated with eth0 as it match all its requirements, then, eDeploy search for a Broadcom interface. We
have two options and eDeploy could take eth1 for that. So ‘eth-pub2’ is set to eth1.

Finally, eth-io1 is associated to eth2 as that’s a Broadcom nic too. But as the last rule is to get a link set to yes, the
matchinl fails since the interface eth2 is down.

The important point is that removing a discriminative criteria in a rule but using it later could leads to situation where
some hardware devices got matched while it should not.

When writing rules, it’s important to keep this in mind to avoid any mis-matching profiles.

Creating the configure script

The configure script’s role is to setup the hardware aspects of the server prior to the Operating System installation
itself. During the init script and based on the server hardware profile, a matching configure script is sent back from
eDeploy to the to be provisioned server.

The configure script shall prepare the following items :

• creating a root filesystem mounted in /chroot

• by calling parted & mkfs to partition and format the partition

• preparing the post-configuration files for the network configuration

• by creating some /post_rsync/etc/network* files using the config function

• define the role and the version to be deployed to this system

• by using set_role(role_name, role_version, bootable_disk)

• will be used to get the operating system during initial installation

bootable_disk = '/dev/' + var['disk']
run('dmsetup remove_all || /bin/true')
for disk, path in ((bootable_disk, '/chroot'),):

run('parted -s %s mklabel msdos' % disk)
run('parted -s %s mkpart primary ext2 0%% 100%%' % disk)
run('dmsetup remove_all || /bin/true')
run('mkfs.ext4 %s1' % disk)

24 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

run('mkdir -p %s; mount %s1 %s' % (path, disk, path))

config('/etc/network/interfaces').write('''
auto lo
iface lo inet loopback

auto %(eth)s
allow-hotplug %(eth)s

iface %(eth)s inet static
address %(ip)s
netmask %(netmask)s
gateway %(gateway)s
hwaddress %(mac)s

''' % var)

set_role('mysql', 'D7-F.1.0.0', bootable_disk)

Best Practices Installing servers with eDeploy, the same configuration could be applied several time to the same
server. When considering the storage part of the configuration, the configure script shall clean the disks and create
new partitions to format them.

As the same script will be applied on the same hardware, all the computing of offset and size of each partition will be
the same. Creating new partitions triggers the kernel to rescan the storage device. As the partition are still aligned,
if some LVM metadata still exists, the Linux kernel will register the Device Mapper devices preventing any later
formating.

It’s mandatory to release any Device Mapper devices detected by the Linux Kernel by using the following command :
‘dmsetup remove_all’

Generating /post_rsync configuration eDeploy philosophy is to always provide a clean OS tree. Some configu-
ration file cannot be handled by a configuration management system such as Puppet or Chef, since they need to be
configured at boot time for the first boot (grub, network, fstab, etc. . .).

The /post_rsync folder gives an administrator the possibility to configure those specific files in the profile configure
script so they overwrite the OS default configuration and are configured for the first boot.

They respect the same filesystem as the operating system. (ie. /etc/sysconfig/network =>
/post_rsync/etc/sysconfig/network)

Installation scenario:

1. Server sends hw.py to eDeploy and get back a configure script

2. Server runs the configure script

• create partition table

• create filesystem

• create /post_rysnc/{etc/sysconfig/network,boot/grub,etc/fstab}

3. Server syncs with eDeploy to retrieve the OS tree that matches its role

4. /post_rsync files overwrite the OS tree configuration files

5. Bootloader is reinstalled

6. Server is rebooted

1.3. Deploy operating systems on an infrastructure 25

eDeploy Documentation, Release 1.0

What to put inside: every configuration file that is hardware related (filesystems, networks, boot, etc. . .)

What not to put inside: every configuration file that is software related. Configuration files that should be managed by
a configuration management tools.

Function helpers for configure scripts Here are the helper functions that can be used in configure scripts:

config(name) create a config file that will automatically be created in /post_rsync. You can use the
following optional arguments to change the behaviour of the function:

fmod change the default mode of 0644 for the created file.

mode change the default ‘w’ mode. Can be something like ‘a’ for appending.

uid change the default uid from 0.

gid change the default gid from 0.

inject_facts(vars) inject puppet facts from the vars variable. This will allow to use the variables into
puppet manifests. The optional prefix variable changes the hw_ prefix is put in front of the fact
names to avoid conflicts with standard facts.

run(cmd) run a command on the system.

set_role(role, version, disk) set the eDeploy role and version to download and pass by the way the disk
where to install the bootloader.

Using the Configuration Management Database (CMDB)

Why using a CMDB ? The CMDB is a simplified database made for

• providing a set of key/values to define properties of a deployed system

• keeping a stable assignment of the properties assigned to a host amongst the time

Deploying a cluster means defining a set of properties that each server should use like :

• hostname

• ipv4 setup of the network interfaces

• ipv4 setup of the management interfaces (IPMI)

• any other specific setting a host may need to setup its initial configuration

Creating a CMDB file A sample CMDB file looks like the following :

generate({'gateway': '10.0.2.2',
'ip': '10.0.2.3-253',
'netmask': '255.255.255.0',
'gateway-ipmi': '10.0.4.2',
'ip-ipmi': '10.0.4.3-253',
'netmask-ipmi' : '255.255.255.0',
'hostname' : 'host001-250'

})

The generate() function is an helper to define what shall be the list of key/values that will be assign for a given host.
In this example, each host will receive variables to define

• an ipv4 address/netmask/gateway for the network interface and the IPMI

• a hostname

26 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

This way of writing the CMDB is called ‘synthetic’.

Defining ranges or lists The generate() supports syntax to defines ranges of elements.

Ranges are defined by using dashes ‘-‘.

The column symbol ‘:’ separates two ranges : this syntax requires having ranges on both side of this symbol. If you
need a single element out-of a serie, you’ll have to write a single value range like ‘10-10’.

• ‘ip’: ‘10.0.2.3-253’ will create 250 hosts’s configuration (from IP .3 to .253)

• ‘hostname’ : ‘host001-250’ will create hostname variable defined from host001 to host250.

• ‘ip’: ‘10.0.2.1-3:5-5:7-9’ will avoid ip ending by .4 and .6 in the range 1-9.

• ‘ip’: ‘10.0.2.1-5:20-15’ will select ip from 1 to 5 and 20 to 15 and keep them in this order.

Note that it is possible to define lists [] to get a pre-defined list of variables. (NOTE: until some point, the use of
tuples () was allowed but is now deprecated)

• ‘ip’: [‘10.0.2.1’, ‘10.0.2.5’, ‘10.0.2.8’] will select 3 ip addresses.

• ‘ip’: (‘10.0.2.1’, ‘10.0.2.5’, ‘10.0.2.8’) will not be expanded but kept as-is.

The following example will declare 12 hosts each with one matching mac address and role, but each host will have 3
users declared. .. code:: python

generate({‘hostname’: ‘os-ci-test1-12’,

‘mac’: [‘00:22:19:57:74:a6’, # test1 ‘00:22:19:57:86:d2’, # test2 ‘00:22:19:57:79:b0’, # test3
‘00:30:48:f4:26:06’, # test4 ‘f4:ce:46:a7:ba:70’, # test5 ‘00:22:19:57:74:79’, # test6
‘00:22:19:57:88:62’, # test7 ‘d8:9d:67:1b:2a:b8’, # test8 ‘d8:9d:67:1a:9b:1c’, # test9
‘d8:9d:67:1a:8f:58’, # test10 ‘d8:9d:67:1a:41:7c’, # test11 ‘d8:9d:67:32:12:a4’, # test12],

‘role’: [’openstack-full’, # test1

‘openstack-full’, # test2 ‘openstack-full’, # test3 ‘install-server’, # test4 ‘openstack-
full’, # test5 ‘openstack-full’, # test6 ‘openstack-full’, # test7 ‘openstack-full’, # test8
‘openstack-full’, # test9 ‘openstack-full’, # test10 ‘openstack-full’, # test11 ‘openstack-
full’, # test12],

‘users’: (‘Leif’, ‘Eric’, ‘Hagar’),

})

The deflated version of the CMDB file The first time a system matched a role, the CMDB is transformed from the
synthetic form to the deflated version of it. For the complete range of systems defined in the synthetic version, an entry
is created. The following example is a partial view of the 250 systems created.

[{'disk': 'vda',
'eth': 'eth0',
'gateway': '10.0.2.2',
'gateway-ipmi': '10.0.4.2',
'hostname': 'host001',
'ip': '10.0.2.3',
'ip-ipmi': '10.0.4.3',
'ipmi-fake-channel': '0',
'mac': '52:54:12:34:00:01',
'netmask': '255.255.255.0',
'netmask-ipmi': '255.255.255.0',
'used': 1},
{'gateway': '10.0.2.2',

1.3. Deploy operating systems on an infrastructure 27

eDeploy Documentation, Release 1.0

'gateway-ipmi': '10.0.4.2',
'hostname': 'host002',
'ip': '10.0.2.4',
'ip-ipmi': '10.0.4.4',
'netmask': '255.255.255.0',
'netmask-ipmi': '255.255.255.0',
},
....

]

The first entry got associated to a given system. System that have mac address ‘52:54:12:34:00:01’ is now associated
to the key/values set of host001. The ‘used’ parameter indicate this entry got assigned to a host. This relationship
between the physical host and this values will be kept amongst the time.

In addition of the information expanded from the CMDB some other parameters defined by the spec file appears. In
this example the disk name is reported as the associated entry is present in the spec file :

[('system', 'product', 'vendor', 'kvm'),
('system', 'product', 'name', 'edeploy_test_vm ()'),
('disk', '$disk', 'size', 'gt(1)'),
....]

The definition of the $disk variable inside the spec file to match the system disk that is greater than 1GB is saved in
the CMDB.

The second entry, and all the following one not shown here to keep example short, is not assigned to any host since
‘used’ parameter is not set.

Using $$variable If a variable inside a spec file is using two dollar ‘$’ sign, it means only this value will be used to
match an entry into the CMDB.

This is useful if you want to match for example system tags to specific settings like that

[('system', 'product', 'serial', '$$tag'),
('network', '$eth', 'serial', '$mac'),]

To insure the system that own the serial number TAG1 will be assigned to ‘host1’, you’ll define the CMDB as the
following :

generate({'tag': ['TAG1', 'TAG2', 'TAG3'],
'ip': '192.168.122.3-5',
'hostname': 'host1-4'})

Using CMDB values inside the configure script All variables defined inside the CMDB are available in the con-
figure script of the same role. They are stored into a python dictionary called ‘var’.

The following example shows how to retrieve values from the CMDB to generate a network configuration file .

config('/etc/network/interfaces').write('''
auto lo
iface lo inet loopback

auto %(eth)s
allow-hotplug %(eth)s
iface %(eth)s inet static

address %(ip)s
netmask %(netmask)s
gateway %(gateway)s

28 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

hwaddress %(mac)s
''' % var)

The ‘eth’ and “mac’ variables of the var dictionary features the interface name caught by match of the spec file (shown
below) with the hardware description and saved into the CMDB.

[('system', 'product', 'vendor', 'kvm'),
('system', 'product', 'name', 'edeploy_test_vm ()'),
('disk', '$disk', 'size', 'gt(1)'),
('network', '$eth', 'ipv4', 'network(10.0.2.0/24)'),
('network', '$eth', 'serial', '$mac'),
('network', '$eth', 'link', 'yes'),]

All the other variables, ip,netmask,gateway were only described in the CMDB and were assigned by the eDeploy
server at the hardware matching time.

Setup the state file

The state file controls which profiles the eDeploy server will provision and the number of time it will provision them.

The file itself is an array of tuple. Each tuple represent the profile eDeploy can provision and the number of time it is
allowed to provision it.

For example (‘vm-debian’, ‘3’) means eDeploy can provision three VMs with the profile ‘vm-debian’. Another
example would be (‘vm-centos’, ‘*’). which means eDeploy can provision an unlimited number of VMs with the
profile ‘vm-centos’. Role with 0 will not be deployed.

A full state file looks like this:

[('hp', '4'), ('vm-centos', '*'), ('vm-debian', '3'), ('kvm-test',
'0')]

It is really important to understand that roles are matched in the order they appear on this file. So if a server hardware
matches ‘hp’ and ‘vm’, only the ‘hp’ role will be applied.

Another important consideration is that the decrementation happens when the hardware matching is validated during
the call to upload.py thus it doesn’t strictly mean that the server provisionning went well all the way. A user might
see this number decrement and have a server whose provision process failed in the way. This might evolve in future
releases.

Note: the state file shall be writable by the httpd user as it will be up to the upload.py to update it.

Boot the target server

To start the deployment, boot the targeted server by using the proper boot device regarded the kind of deployment you
choose (PXE versus USB).

Debugging

Enable SSH server on target server

If the eDeploy configuration specifies the ‘ONFAILURE=console’ option, an SSH server will be spawned if the
deployment fails. If a permanent SSH server is requested, the ‘DEBUG=1’ option can be set.

1.3. Deploy operating systems on an infrastructure 29

eDeploy Documentation, Release 1.0

APPEND SERV=192.168.122.45 RSERV=192.168.122.45 DEBUG=1 HTTP_PATH=/

Note : The debugging SSH server is started on port 2222.

Centralize Logging (UPLOAD_LOG=1)

With the UPLOAD_LOG flag in the boot file, eDeploy allows every provisioned server to upload their log file auto-
matically to the edeploy server.

APPEND SERV=192.168.122.45 RSERV=192.168.122.45 UPLOAD_LOG=1 HTTP_PATH=/

Log file content The log file archive concatenate several different log files together. In order :

• Kernel Command Line (/proc/cmdline)

• Content of /configure

• Content of dmesg

Log file location Upon one of the following action during the init script (give_up, do_reboot, do_halt, do_console),
an archive is made out of the file’s content mentionned above and sent to the upload.py script. The upload.py script
will drop the archive in $LOGDIR/${vendor}-${product}-${serial}.log.gz.

vendor, product and serial variables are from the dmidecode function,

Note: It’s mandatory to let the httpd user having the right access to $LOGDIR to allow such file creation

Server side upload.py debug

If the server is misconfigured, the upload.py python script might fail. It could be a permission issue, a resource missing,
etc. . . Those kinds of errors will not be obvious from the client (Target server) side. To be able to figure out what is
happening, all those errors are logged in the server, in the file specified for error_log in your httpd configuration.

Try match - Debugging match failures

At any point in time an administrator can check if an hardware configuration matches a specific spec files without
having to run the provisioning process. eDeploy provides a try_match.py utility whose sole purpose is to print False if
spec does not match the hardware description file (.hw) it was run against, else print the spec file.

python try_match.py <hw_file> <spec_file>

Note: try_match.py is located under edeploy/server/try_match.py

1.4 Manage the Upgrade Process (In Detail)

1.4.1 What the upgrade process should do ?

The terminology ‘upgrade’ here could be actually misleading, it should be called migration. With eDeploy, and based
on the philosophy of the project, one can do an upgrade, as much as a downgrade following the exact same process.

A migration will take your system from state ‘s’ to state “s1’ based on the specification provided in an ‘s’ to “s1’ up-
grade file. The user is free to create the analogue migration file so the system can be moved back from state ‘s1’ to
“s’.

30 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

1.4.2 How to create an upgrade ?

The upgrade file

In an upgrade file the user should list the exact command (package installation) the server will need to take to go from
state s to state s1.

The upgrade file follows a strict naming convention. This is really important to understand that if the file is not named
accordingly the upgrade will not happen.

${ROLE}_${FROM}_${TO}.upgrade

${ROLE} The role the server is bound to
${FROM} The version number the server is currently in
${TO} The version number the server will reach

Example : mysql_D7-F.1.0.0_D7-F.1.0.1.upgrade

This example defines the upgrade file to take a MySQL (role) server from version D7-F.1.0.0 to D7-F.1.0.1

The actual content of the file list the package that will be installed from state s to state s1. Find below the content of
the mysql_D7-F.1.0.0_D7-F.1.0.1.upgrade file.

. common # Load function's
library

install_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

In version D7-F.1.0.0, the server will be in a state where mysql-server5.5 and apache2 are not installed, once the
upgrade script will be run mysql-server5.5 and apache2 will be part of the D7-F.1.0.1

The downgrade file would be called mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade, and instead of using install_packages the
user will call remove_packages.

Run ./upgrade-from script

As stated earlier, the upgrade file is a description file. In itself it takes no action. The ./upgrade-from script is the
pieces that will do the actual work. This is the how it works :

1. Copy base version

2. Update the repositories metadatas

3. Run the upgrade script

4. Set defaults for exclude and add_only file if they don’t exist

5. Do some cleaning

Once the script run, a new version of the OS is available in the appropriate directory, ready to be queried by eDeploy
clients.

Customize add_only / exclude / pre / post files

By it’s core principle, an upgrade brings change to the system. edeploy provides native OS tree. To load all the tree at
installation time is fine, but during upgrades an administrator might not want to erase every files that is already present
in the server. Most notably file presents in /var/lib

To give an administrator a great deal of flexibility edeploy provides :

1.4. Manage the Upgrade Process (In Detail) 31

eDeploy Documentation, Release 1.0

• Two files for explication exclusion (exclude) and inclusion (add_only)

• Two hooks before (pre) and after(post) the upgrade takes place

Those files are located on a specific path $METADATADIR/$FROM/$ROLE/$TO

• METADATDIR : From /etc/edeploy.conf

• FROM : Version to migrate from

• ROLE : The role concerned by the migration

• TO : Version to migrate to

Note : edeploy creates default files for exclude and add_only, but it is up to the administrator to define its own pre/post
hooks

add_only

When an administrator just want a specific set of files during an upgrade, those files could be specify in a file per line
model in the add_only file. During the rsync process only those files will be synced.

Note: The rsync process works in a two phase fashion, the first run consider only the exclude file while the second run
consider only the add only file

exclude

When an administrator want to keep a specific set of files untouched during an upgrade, those files could be specify in
a file per line model in the exclude file. During the rsync process all the files but those mentioned in exclude will be
synced

Note: The rsync process works in a two phase fashion, the first run consider only the exclude file while the second run
consider only the add only file

pre

This hook is triggered before the two rsync phases mentioned earlier. It can allow someone to do a db backup,
synchronize with an other server, or any other use that can come in mind.

post

This hook is triggered after the two rsync phases mentioned earlier. If the post script return value is 100 then a reboot
will be triggered. It can allow someone to resynchronize/reload what has been save during pre or any other task that
can come in mind.

Run the upgrade on the client

edeploy list - list available update

On servers provisioned by eDeploy, a user has an edeploy command install. A user can list the available user by simply
running edeploy list. As per eDeploy philosophy, it will list both downgrade and upgrade migrations.

32 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

edeploy test_upgrade VERSION - simulate the upgrade

Before doing any upgrade, and administrator should run test-upgrade first. test-upgrade will perform a trial run with
no changes. It uses the –dry-run option from rsync to run.

edeploy upgrade VERSION - perform the actual upgrade

Perform the actual upgrade. In order, the pre script is executed, then the rsync (exclude, add_only) is run, then the
post script is executed, finally the metadata - Version and Role- are updated. If the process performed successfully, the
server will be rebooted.

edeploy verify - verify the integrity of the current state

Verify the integrity of the system by doing a delta between the data stored in the OS image server and the local system.

1.4.3 Upgrade post-configuration policies

There are two ways to deal with post configuration when using eDeploy. The user either assumes that eDeploy only
deploys clean, genuine environment and thus rely on a configuration management system to reconfigure the servers.
Or, the user can define a list of file to exclude during the upgrade, this will lead to all system being updated but those
files. Here a review of the two different policies.

Puppet

Puppet is a configuration management system. It sole purpose is to make sure the current configuration on its agent is
strictly identical to the one defined on its master for a given agent, no matter what is the current state of the server. So
at each run Puppet will apply the modification necessary to upgrade the system so it is in a consistent state. This tool is
ideal to reconfigure a system after a eDeploy upgrade. This way the user is certain that the system is clean (eDeploy)
and well configured (Puppet)

Exclude during the upgrade generation

For user who do not have any configuration management system in place, it is still possible to specify a list of file
which will be exclude from the rsync. Users needs to be extremely careful that the list of file they specify is exhaustive,
else the upgrade might result in data loss.

1.4.4 Manage Downgrades

As explained in Manage The Upgrade Process, eDeploy handles bi-directional migrations, which means it also handles
downgrade.

To enable a downgrade, the administrator follows the exact same steps as for creating an upgrade. Two considerations
needs to be taken in account to create a downgrade :

File name syntax

As mentioned earlier, an upgrade (hence downgrade) file name must follow this syntax :

1.4. Manage the Upgrade Process (In Detail) 33

eDeploy Documentation, Release 1.0

${ROLE}_${FROM}_${TO}.upgrade

For a downgrade, the only difference with an upgrade is the that the FROM variable will be higher than the TO variable.

mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade

Downgrade script content

The purpose of this script is to be able to bring back a server to an earlier profile version. Hence, the content of this
file should be the symetrically opposite of the ugrade script whenever possible.

As a reminder, much like upgrades, downgrades can only move from one version to it’s closest one, meaning to
downgrade from 1.0.2 to 1.0.0, the administrator first need to move from 1.0.2 to 1.0.1 and then from 1.0.1 to 1.0.0

When the mysql_D7-F.1.0.0_D7-F.1.0.1.upgrade look like this

. common # Load function's
library

install_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

The equivalent mysql_D7-F.1.0.1_D7-F.1.0.0.upgrade should look like this

. common # Load function's
library

remove_packages $dir mysql-server-5.5 apache2 # install mysql and
apache2

Warning : When packages wise eDeploy can handle downgrades well, an administrator needs to make sure that run-
ning application won’t break (incompatibility, etc. . .) when a server is downgraded. This is not eDeploy responsibility
to take care of that sort of issues

1.5 Developing on eDeploy

1.5.1 Git Organisation

The git repository is organized with the following directories

Ansible/

This directory owns every about orchestration.

Build/

This directory features all roles that could be built.

Config/

This directory contains all hardware profiles (.spec), configure scripts (.configure), CMDB files (.cmdb) and the state
file.

34 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

Debian/

This directory provides all the debian packaging content

Grapher/

This directory provides a tool to plot performances reported by the Automatic Health Check tool

Metadata/

This directory is used to hosts metadata generated by the upgrade tool.

Server/

This directory includes all the code that run on an eDeploy server under the CGI environment.

Src/

This directory have all the python code used by the eDeploy deployment and Automatic Health Check tools to detect
the hardware.

Tests/

This directory provides a testing suite.

1.5.2 Testing eDeploy

When developing on eDeploy, it’s important to test modifications in a easy way. It’s pretty unusual to have a couple
of servers available only for testing eDeploy.

The testing suite is doing the following tasks :

• building a role

• building the deployment tool

• start a Virtual machine with deployment tool booted in PXE mode

• install the Virtual machine with the targeted role

• halt the Virtual machine once installed

• power on the Virtual machine again to boot the installed Operating System

Building the role & deployment tool

No much things to say here, the roles are built like any other role as described in this documentation.

1.5. Developing on eDeploy 35

eDeploy Documentation, Release 1.0

Start the virtual machine

The testing suite will spawn a kvm virtual machine and consider the content of the ‘tests/tftpboot’ directory as tftp
root for the PXE booting.

The PXE booting is done inside kvm without any requirement on the infrastructure. Kvm will emulate the DHCP/PXE
service.

Install the virtual machine

This step will work exactly the same as on a real deployment but the performance will obviously different.

Halt the virtual machine & power it up again

The default behavior is to halt the virtual machine after the installation to test the bootloader configuration. This could
be tweaked for debugging purposes by changing the default value of ONSUCCESS or ONFAILURE values from the
‘tests/tftpboot/pxelinux.cfg/default’ configuration file. Please refer to this user manual to find the appropriate values.

Starting the tests

To make testing easier, eDeploy provides a testing target inside the build/ directory.

Testing mode have be used like :

make test TEST_ROLE=<role> DIST=<dist> DVER=<dver>

The ‘role’ is any of the one available inside the config/ directory.

The ‘dist’ shall be any of the Debian or Ubuntu version (wheezy or precise).

Note: Redhat and Centos roles cannot be yet tested this way since the deployment tools requires python 2.7 while
theses Linux distribution provides only a 2.6 version of it.

The ‘dver’ is just a string which represents the Linux distribution and version you choose like D7 for Debian 7.

1.6 APPENDIX

1.6.1 APPENDIX A

To get a complete overview of the various hardware components and settings that can be used in a specification rule
of a .spec file, an exhaustive table reports items that can be matched.

The discrimination level (low,medium,high,unique) reports how much this information can be trust to discriminate a
system for another. The ‘unique’ level reports this information shall make this system unique in your infrastructure.

Hard drive

eDeploy is able to report disks’s properties from

• Regular SATA controllers or logical drives from Raid Controllers

• Disks attached to a Hewlett Packard Raid controller (hpsa)

36 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

hpsa Detect HP RAID controller
configuration

Sample output Discrim.
level

size Size of the raw disk (‘disk’, ‘1I:1:1’, ‘size’, ‘300’) Medium
type Type of the raw disk (‘disk’, ‘1I:1:1’, ‘type’, ‘SAS’) Low
slot Raw disk slot’s id (‘disk’, ‘1I:1:1’, ‘slot’, ‘0’) Medium
disk Detect disks Sample output
size Size of the disk (‘disk’, ‘sda’, ‘size’, ‘899’) Medium
ven-
dor

Vendor of the disk (‘disk’, ‘sda’, ‘vendor’, ‘HP’) Medium

model Model of the disk (‘disk’, ‘sda’, ‘model’, ‘LOGICAL
VOLUME’)

High

rev Firmware revision of the disk (‘disk’, ‘sda’, ‘rev’, ‘3.42’) Medium
WCE Write Cache Enabled (‘disk’, ‘sda’, ‘WCE’, ‘1’) Low
RCD Read Cache Disabled (‘disk’, ‘sda’, ‘RCD, ‘1’) Low

System

Note : Product information are provided by the DMI structures of the host. These information are not always provided
by the hardware manufacturer.

prod-
uct

System Information Sample Output Discrim.
Level

serial Serial number of the
HW

(‘system’, ‘product’, ‘serial’, ‘XXXXXX’‘) Unique*

name Product name (‘system’, ‘product’, ‘name’, ‘ProLiant DL360p Gen8
(654081-B21)’)

High

vendor Vendor name (‘system’, ‘product’, ‘vendor’, ‘HP’) Medium

* : if provided by the hardware manufacturer

ipmi Detect IPMI interfaces Sample output Discrim. Level
ipmi The IPMI channel number (‘system’, ‘ipmi’, ‘channel’, 2) Low
ipmi-fake Fake IPMI interface for testing (‘system’, ‘ipmi-fake’, ‘channel’, ‘0’) Low

Firmware

Note : Firmware information are provided by the DMI structures of the host. These information are not always pro-
vided by the hardware manufacturer.

bios Detect BIOS informations Sample output Discrim.
Level

version Version of the BIOS (‘firmware’, ‘bios’, ‘version’, ‘G1ET73WW (2.09)’) Medium
date Date of the BIOS release (‘firmware’, ‘bios’, ‘date’, ‘10/19/2012’) Medium
vendor Vendor (‘firmware’, ‘bios’, ‘vendor’, ‘LENOVO’) Low

1.6. APPENDIX 37

eDeploy Documentation, Release 1.0

Network

network NIC informations sample output Discrim.
Level

serial Mac address (‘network’, ‘eth0’, ‘serial’, ‘d8:9d:67:1b:07:e4’) Unique
vendor NIC’s vendor (‘network’, ‘eth0’, ‘vendor’, ‘Broadcom Corporation’) Low
product NIC’s description (‘network’, ‘eth0’, ‘product’, ‘NetXtreme BCM5719

Gigabit Ethernet PCIe’)
Medium

size Link capability in
bits/sec

(‘network’, ‘eth0’, ‘size’, ‘1000000000’) Low

ipv4 IPv4 address (‘network’, ‘eth0’, ‘ipv4’, ‘10.66.6.136’) High
ipv4-
netmask

IPv4 netmask (‘network’, ‘eth0’, ‘ipv4-netmask’, ‘255.255.255.0’) Low

ipv4-cidr IPv4 cidr (‘network’, ‘eth0’, ‘ipv4-cidr’, ‘24’) Low
ipv4-
network

IPv4 network address (‘network’, ‘eth0’, ‘ipv4-network’, ‘10.66.6.0’) Medium

link Physical Link Status (‘network’, ‘eth0’, ‘link’, ‘yes’) Medium
driver NIC’s driver name (‘network’, ‘eth0’, ‘driver’, ‘tg3’) Low
duplex NIC’s duplex type (‘network’, ‘eth0’, ‘duplex’, ‘full’) Low
speed NIC’s current link speed (‘network’, ‘eth0’, ‘speed’, ‘10Mbit/s’) Medium
latency PCI latency of the

network device
(‘network’, ‘eth0’, ‘latency’, ‘0’) Low

autonegoti-
ation

NIC’s auto-negotiation (‘network’, ‘eth0’, ‘autonegotiation’, ‘on’) Low

Cpu

Per CPU

cpu CPU informations Sample output Discrim.
Level

physid CPU’s physical id (‘cpu’, ‘physical_0’, ‘physid’, ‘1’) Low
cores CPU’s number of

cores
(‘cpu’, ‘physical_0’, ‘cores’, ‘2’) Medium

en-
abled_cores

CPU’s number of
enabled cores

(‘cpu’, ‘physical_0’,’ enabled_cores’, ‘2’) Medium

threads CPU’s number of
threads

(‘cpu’, ‘physical_0’, ‘threads’, ‘4’) Medium

product CPU’s identification
string

(‘cpu’, ‘physical_0’, ‘product’, ‘Intel(R) Core(TM)
i5-3320M CPU @ 2.60GHz’)

High

vendor CPU’s vendor (‘cpu’, ‘physical_0’, ‘vendor’, ‘Intel Corp.’) Low
frequency CPU’s internal

frequency in Hz
(‘cpu’, ‘physical_0’, ‘frequency’, ‘1200000000’) Low

clock CPU’s clock in Hz (‘cpu’, ‘physical_0’, ‘clock’, ‘100000000’) Low

Aggregation for all CPUs

cpu CPU aggreg. informations Sample output Discrim. Level
number (physical) Number of physical CPUs (‘cpu’, ‘physical’, ‘number’, 2) Medium
number (logical) Number of logical CPUs (‘cpu’, ‘logical’, ‘number’, ‘8’) Medium

38 Chapter 1. Linux systems provisionning and updating made easy

eDeploy Documentation, Release 1.0

Memory

Note : Memory information are provided by the DMI structures of the host. These information are not always provided
by the hardware manufacturer.

mem-
ory

Detect Memory
informations

Sample output Discrim.
Level

total Amount of memory on
the host (in Bytes)

(‘memory’, ‘total’, ‘size’, ‘17179869184’) High

size Bank size (in Bytes) (‘memory’, ‘bank:0’, ‘size’, ‘4294967296’) Medium
clock Memory clock speed (in

Hz)
(‘memory’, ‘bank:0’, ‘clock’, ‘667000000’) Low

de-
scrip-
tion

Memory’s description (‘memory’, ‘bank:0’, ‘description’, ‘FB-DIMM DDR2
FB-DIMM Synchronous 667 MHz (1.5 ns)’)

Medium

vendor Memory’s vendor (‘memory’, ‘bank:0’, ‘vendor’, ‘Nanya Technology’) Medium
serial Memory’s serial number (‘memory’, ‘bank:0’, ‘serial’, ‘C7590943’) Unique*
slot Physical Slot of this Bank (‘memory’, ‘bank:0’, ‘slot’, ‘DIMM1’) High
banks Number of memory

banks
(‘memory’, ‘banks’, ‘count’, 8) Medium

*: If provided by the hardware manufacturer

Infiniband

Per card

infini-
band

Detect Infiniband
informations

sample output Discrim.
Level

card_type IB card’s type (‘infiniband’, ‘card0’, ‘card_type’, ‘mlx4_0’) Medium
de-
vice_type

IB card’s device type (‘infiniband’, ‘card0’, ‘device_type’, ‘MT4099’) Medium

fw_version IB card firmware version (‘infiniband’, ‘card0’, ‘fw_version’, ‘2.11.500’) High
hw_version IB card’s hardware version (‘infiniband’, ‘card0’, ‘hw_version’, ‘0’) Low
nb_ports IB card number of ports (‘infiniband’, ‘card0’, ‘nb_ports’, ‘2’) Low
sys_guid (‘infiniband’, ‘card0’, ‘sys_guid’,

‘0x0002c90300ea7183’)
Unique

node_guid (‘infiniband’, ‘card0’, ‘node_guid’,
‘0x0002c90300ea7180’)

Unique

1.6. APPENDIX 39

eDeploy Documentation, Release 1.0

Per port

infiniband Detect Infiniband
informations

sample output Discrim.
Level

state Interface state (‘infiniband’, ‘card0_port1’, ‘state’, ‘Down’) High
physi-
cal_state

Physical state of the link (‘infiniband’, ‘card0_port1’, ‘physical_state’,
‘Down’)

High

rate Speed in Gbit/sec (‘infiniband’, ‘card0_port1’, ‘rate’, ‘40’) High
base_lid (‘infiniband’, ‘card0_port1’, ‘base_lid’, ‘0’ Low
lmc (‘infiniband’, ‘card0_port1’, ‘lmc’, ‘0’) Low
sm_lid (‘infiniband’, ‘card0_port1’, ‘sm_lid’, ‘0’) Low
port_guid (‘infiniband’, ‘card0_port1’, ‘port_guid’,

‘0x0002c90300ea7181’)
Unique

40 Chapter 1. Linux systems provisionning and updating made easy

	Linux systems provisionning and updating made easy
	What eDeploy is made for ?
	Building Operating Systems (in detail)
	Deploy operating systems on an infrastructure
	Manage the Upgrade Process (In Detail)
	Developing on eDeploy
	APPENDIX

